Автор работы: Пользователь скрыл имя, 23 Октября 2013 в 18:31, курс лекций
Целью преподавания дисциплины является изучение практических методов превращения сырья и материалов в готовые продукты, а также способов применения, используемых при этом технических средств.
Задачами дисциплины является изучение:
основных направлений развития технологии пищевых продуктов;
теоретических основ современных технологий пищевых продуктов, включая особенности производства белковых препаратов и аналогов продуктов;
современных и нетрадиционных способов и методов переработки сырья растительного, животного, микробиологического происхождения и рыбы, являющихся неотъемлемой частью глубокой подготовки молодых специалистов в условиях переходного периода и становления рыночной экономики, организации эффективной работы предприятий различных форм собственности.
Предмет, цели и задачи курса.
Возникновение и развитие науки о технологии продуктов.
Краткая характеристика пищевых отраслей промышленности Кыргызской Республики.
Концепция государственной политики в области здорового питания населения КР
План лекции:
В основе ряда пищевых технологий лежат химические превращения. Важная роль отводится этим процессам на отдельных стадиях производства, а также при хранении.
Скорость химических процессов имеет большое значение. Скорость химической реакции характеризуется изменением концентрации одного из реагирующих веществ в единицу времени. При расчете скорости реакции можно рассматривать одно из исходных веществ, концентрация которого в ходе реакции уменьшается, или один из продуктов реакции, концентрация которого в ходе реакции возрастает. Если изменение концентрации отнести к бесконечно малому промежутку времени, то производная концентрация во времени будет составлять истинную скорость реакции в данный момент.
В зависимости
от агрегатного состояния
В гомогенных системах реагирующие вещества находятся в одной какой-либо фазе: газовой (Г), жидкой (Ж) или твердой (Т).
В гетерогенных – в разных фазах. На практике наиболее часто встречаются следующие гетерогенные системы: Г-Ж; Г-Т; Ж-Т. В некоторых случаях такие системы могут быть трехфазными (Г-Ж-Т; Г-Т-Т).
Реакция в гомогенных системах протекают обычно быстрее, чем в гетерогенных, механизм технологического процесса проще и управлять им легче, поэтому на производстве, если это возможно, стремятся перевести твердые вещества в жидкое состояние, например, путем растворения.
1. Факторы, влияющие на скорость химических реакций
Основные факторы, влияющие на скорость химических реакций, - это концентрация реагирующих веществ, температура, наличие катализатора.
Концентрация.
Увеличение концентрации взаимодействующих веществ – один из самых распространенных приемов интенсификации процессов. Зависимость скорости химических реакций от концентрации определяется законом действия масс. Согласно этому закону скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степени, равной стехиометрическому коэффициенту, стоящему перед формулой вещества в уравнении реакции. Например, в производстве патоки для реакции нейтрализации хлороводородной кислоты карбонатом натрия скорость может быть вычислена по уравнению:
2НСI + Na2CO3 = 2NaCI + H2O + CO2
Закон действия масс в общем виде:
где К – коэффициент пропорциональности, который иначе называется константой скорости реакции; Ca и Cb – концентрация вещества a и b, участвующих в химической реакции; n и m - стехиометрические коэффициенты.
Если принять, что Ca и Cb = 1, то v = К, т.е. константа скорости реакции численно равна скорости реакции при концентрации реагирующих веществ, равной единице. Константа скорости зависит от природы реагирующих веществ, температуры, наличия катализатора и не зависит от концентрации веществ, участвующих в химической реакции. Константа скорости реакции при данной скорости и температуре постоянна.
Температура - важный фактор, определяющий скорость реакции. С повышением температуры скорость реакции возрастает, что связано с увеличением константы скорости реакции. Согласно правилу Вант-Гоффа, повышение температуры на 100С увеличивает скорость реакции в 2-4 раза (в среднем в 3 раза). Это правило приближенно и применимо к реакциям, протекающим в области температур от 0 до 3000С и в небольшом температурном интервале.
Характер
влияния температуры и
Для протекания химических реакций необходимо разорвать внутримолекулярные связи в молекулах реагирующих веществ. Если сталкивающиеся молекулы обладают большой энергией и ее достаточно для разрыва связей, то реакция пойдет; если энергия молекул меньше необходимой, то столкновение будет неэффективным и реакция не пойдет.
При повышении температуры количество активных молекул увеличивается, число столкновений между ними возрастает, в результате чего растет скорость реакции. С увеличением концентрации реагирующих веществ общее число столкновений, в том числе эффективных, также возрастает, в результате увеличивается скорость реакции.
Катализатор - это вещество, которое резко изменяет скорость реакции. В присутствии катализаторов реакции ускоряются в тысячи раз, могут протекать при более низких температурах, что экономически выгодно. Велико значение катализаторов в органическом синтезе - в процессах окисления, гидрирования, дегидрирования, гидратации и др. Чем активнее катализатор, тем быстрее идут каталитические реакции. Катализаторы могут ускорять одну реакцию, группу реакций или реакции разных типов, т.е. они обладают индивидуальной или групповой специфичностью, а некоторые из них пригодны для многих реакций. Например, ионы водорода ускоряют реакции гидролиза белков, крахмала и других соединений.
Существуют каталитические реакции, в которых катализатором является один из промежуточных или конечных продуктов реакции. Эти реакции идут с малой скоростью в начальный период и с возрастающей - в последующий.
Катализаторами служат преимущественно металлы в чистом виде (никель, кобальт, железо, платина) и в виде оксидов или солей (соединения железа, магния, кальция, меди и т.п.). Неорганические катализаторы термостабильны и реакции с ними протекают при сравнительно высоких температурах.
Наличие посторонних веществ в среде, где протекает реакция, влияет на катализатор по-разному: одни нейтральны, другие усиливают действие катализатора, третьи его ослабляют или подавляют. Вещества, отравляющие катализатор, называются каталитическими ядами.
В зависимости от того, находится катализатор в той же фазе, что и реагирующие вещества, будучи равномерно распределенным в реакционной среде, или образует самостоятельную фазу, говорят о гомогенном или гетерогенном катализе.
В гетерогенном катализе реагирующие вещества, как правило, находятся в жидком или газообразном состоянии, а катализатор - в твердом, при этом реакция протекает на границе двух фаз, т.е. на поверхности твердого катализатора. Например, каталитическая реакция гидрирования жиров трехфазная: катализатор (металлический никель) образует твердую фазу, водород - газообразную, а жир - жидкую. Поэтому в данном случае речь идет о гетерогенном катализе.
Для того, чтобы объяснить механизм гомогенного катализа, пользуются теорией промежуточных соединений. При внесении катализатора реакция проходит через несколько промежуточных стадий, требующих меньшей энергии активации, чем прямая реакция без катализатора, что приводит к колоссальному возрастанию скорости реакции.
Медленный процесс, например, реакция
А + В = АВ,
в присутствии катализатора К протекает в две стадии:
А + К = АК (промежуточное соединение);
АК + В = АВ + К.
Каждая из этих стадий идет с малой энергией активации и, следовательно, с большой скоростью. Катализатор образует промежуточное соединение, которое при взаимодействии с другим веществом регенерирует катализатор.
Многие гомогенные реакции катализируются действием ионов Н+ и ОН-. К таким реакциям относятся инверсия сахарозы, гидролиз сложных эфиров, в том числе жиров. Ионы металлов катализируют реакции окисления, гидролиза. Например, медь катализирует окисление аскорбиновой кислоты, поэтому оборудование для переработки плодов и овощей нельзя изготавливать из меди и ее сплавов. Окисление пищевых жиров ускоряется под действием ионов меди, железа, марганца, поэтому жиры нельзя хранить в металлической таре.
Основным
недостатком гомогенного
Большинство каталитических реакций положительно, т.е. в присутствии катализатора их скорость возрастает. Однако встречается отрицательный катализ, когда катализатор замедляет скорость реакции. В данном случае катализатор называют ингибитором. Если ингибитор тормозит процесс окисления, его называют антиокислителем или антиоксидантом.
2. Сущность отдельных химических процессов и их роль
в пищевой промышленности
Получение
и хранение самых разнообразных
пищевых продуктов
Гидролиз.
Реакция разложения сложных веществ (белков, жиров, углеводов) до более простых под действием кислот и щелочей с присоединением молекулы воды называется гидролизом.
Сахароза при нагревании с кислотами гидролизуется, образуя инвертный сахар (смесь равных количеств глюкозы и фруктозы):
С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6.
Характерная особенность сахарозы — исключительная легкость ее гидролиза: скорость этого процесса примерно в тысячу раз больше, чем скорость гидролиза при этих же условиях таких ди-сахаридов, как мальтоза или лактоза.
Инвертный сироп обладает двумя свойствами - свойствами антикристаллизатора и гигроскопичностью. Первое свойство связано с его вязкостью, а второе - с присутствием фруктозы, являющейся самым гигроскопичным из всех известных сахаров и способным поглощать влагу из окружающего воздуха даже при его относительной влажности 45-50%.
Антикристаллизационные свойства инвертного сиропа позволяют широко использовать его при производстве карамели.
Инвертный сироп получают непосредственно на фабриках, используя в качестве катализатора сильную кислоту, например, хлороводородную. Чаще всего для этих целей используют органические кислоты - молочную, лимонную и винную. В первом случае в 80%-й раствор сахара при температуре 900С вводят 0,02-0,03% хлороводородной кислоты в виде 10%-го раствора. Гидролиз длится 20-30 мин в зависимости от количества вводимой кислоты. По окончании инверсии сироп нейтрализуют 10%-м раствором гидрокарбоната натрия до слабокислой реакции. Нейтрализацию ведут при температуре 650С, чтобы предотвратить потемнение раствора.
Во втором случае органические кислоты оказывают более слабое инвертирующее действие и нарастание инвертного сахара идет медленнее. Свойства антикристаллизатора и гигроскопичности инвертного сахара широко используются в различных отраслях кондитерской промышленности.
Так, гигроскопичность инвертного сиропа широко используется при хранении кондитерских изделий. Она ограничивает применение инвертного сиропа при производстве карамели, так как при хранении карамель «намокает». В то же время гигроскопичность инвертного сахара используется при введении его в рецептуру мучных кондитерских изделий для увеличения срока хранения готового продукта.
Не менее важная роль принадлежит гидролизу крахмала.
Гидролиз крахмала - процесс каталитический. В качестве катализатора при гидролизе крахмала применяют минеральные кислоты, обычно хлороводородную кислоту. На скорость реакции оказывают влияние примеси, содержащиеся в крахмале. Реагируя с кислотой, они понижают ее концентрацию в растворе, в результате чего скорость реакции уменьшается. Наиболее сильно связывают кислоту фосфаты и аминокислоты. Меланоидинообразование.
Это сложный
окислительно-
Образование меланоидинов - основная причина потемнения пищевых продуктов в процессе их изготовления, сушки и хранения. Особенно интенсивно эта реакция протекает при повышенных температурах во время выпечки хлебобулочных и мучных кондитерских изделий; в процессе уваривания сахарных сиропов при производстве сахарного песка; при сушке солода; при самосогревании зерна; в процессе тепловой обработки вин; при приготовлении игрисных и помадных масс типа крем-брюле. Реакция меланоидинообразования сопровождается потемнением продуктов (фруктово-ягодного пюре, соков, повидла), которое наблюдается при длительном нагревании этих продуктов при высокой температуре, а также при их фасовании в горячем виде и хранении при повышенной температуре.