Разделение изотопов и применение их в ядерном реакторе

Автор работы: Пользователь скрыл имя, 26 Февраля 2013 в 14:33, реферат

Краткое описание

Цель исследования – выявить отличительные особенности текстов научно-технической направленности в свете задач, выполняемых ими как средством языковой коммуникации в области науки, и изучить влияние этих особенностей на практику перевода текстов в области оценки соответствия.
Цель исследования определила следующие задачи:
- Выделить особенности научного стиля английского языка по сравнению с русским языком;
- Исследовать терминологию в области оценки соответствия, принятую в авторитетных международных сообществах;
- Выделить основные трудности перевода терминологии научно-технических текстов и наметить пути их решения.
Материалом исследования послужили англоязычные стандарты в области разделения изотопов и применения их в ядерном реакторе.

Содержание

1.Введение……………………………………………………………………...…3
2.Abstract………………………………………………………………………….5
3. Статьи «Isotope» ….…………………………………………………………..7
- «Isotope separation» ………………………………………………………….16
- «Nuclear reactor» …………………………………………………………….24
4. Перевод статей ………………………………………………………………43
5.Анализ перевода..…………………………………………………………….83
6. Словарь терминов и аббревиатур…………………………………………87
7. Список использованной литературы……………………………………..91
8.Приложения: технические статьи на английском языке (450тыс. знаков) ………………………………………………………………..................94

Вложенные файлы: 1 файл

диплом полный вариант 2.doc

— 1.57 Мб (Скачать файл)

In popular culture

The Chernobyl accident attracted a great deal of interest. Because of the distrust that many people (both within and outside the USSR) had in the Soviet authorities, a great deal of debate about the situation at the site occurred in the first world during the early days of the event. Because of defective intelligence based on photographs taken from space, it was thought that unit number three had also suffered a dire accident.

Journalists mistrusted many professionals (such as the spokesman from the UK NRPB), and in turn encouraged the public to mistrust them.

In Italy, the Chernobyl accident was reflected in the outcome of the 1987 referendum. As a result of that referendum, Italy began phasing out its nuclear power plants in 1988, a decision that was effectively reversed in 2008.

In 1995 Japanese animator Hayao Miyazaki wrote and directed "On Your Mark", a music video for Japanese pop duo Chage & Aska. This was essentially an animated music video lasting almost seven minutes. The opening scene shows a clean, old-fashioned and apparently deserted small village which is dominated by a huge, asymmetrical version of the Chernobyl "sarcophagus." In an interview in "Animage" magazine in 1995, Miyazaki compared the sarcophagus in the video to Chernobyl, noting the survival of plant life.[98]

The video game Call of Duty 4: Modern Warfare features a mission taking place in Pripyat.[99] The "S.T.A.L.K.E.R" series of video games is set in the Chernobyl Exclusion Zone.[100]

Commemoration

The Front Veranda (1986), a lithograph by Susan Dorothea White in the National Gallery of Australia, exemplifies worldwide awareness of the event. Heavy Water: A film for Chernobyl was released by Seventh Art in 2006 to commemorate the disaster through poetry and first-hand accounts. The film secured the Cinequest Award as well as the Rhode Island "best score" award  along with a screening at Tate Modern.

Chernobyl 20

This exhibit presents the stories of 20 people who have each been affected by the disaster, and each person's account is written on a panel. The 20 individuals whose stories are related in the exhibition are from Belarus, France, Latvia, Russia, Sweden, Ukraine, and the United Kingdom.

Developed by Danish photo-journalist Mads Eskesen, the exhibition is prepared in multiple languages including English, German, Danish, Dutch, Russian, and Ukrainian.

 

In Kiev, Ukraine, the exhibition was launched at the "Chernobyl 20 Remembrance for the Future" conference on 23 April 2006. It was then exhibited during 2006 in the United States, Australia, Denmark, the Netherlands, Switzerland, Ukraine, and the United Kingdom.

 

 

In nuclear physics, nuclear chemistry and astrophysics nuclear fusion is the process by which two or more atomic nuclei join together, or "fuse", to form a single heavier nucleus. This is usually accompanied by the release or absorption of large quantities of energy. Large-scale thermonuclear fusion processes, involving many nuclei fusing at once, must occur in matter at very high densities and temperatures.

The fusion of two nuclei with lower masses than iron (which, along with nickel, has the largest binding energy per nucleon) generally releases energy while the fusion of nuclei heavier than iron absorbs energy. The opposite is true for the reverse process, nuclear fission.

In the simplest case of hydrogen fusion, two protons have to be brought close enough for the weak nuclear force to convert either of the identical protons into a neutron forming the hydrogen isotope deuterium. In more complex cases of heavy ion fusion involving two or more nucleons, the reaction mechanism is different, but the same result occurs–one of combining smaller nuclei into larger nuclei.

Nuclear fusion occurs naturally in all active stars. Synthetic fusion as a result of human actions has also been achieved, although this has not yet been completely controlled as a source of nuclear power. In the laboratory, successful nuclear physics experiments have been carried out that involve the fusion of many different varieties of nuclei, but the energy output has been negligible in these studies. In fact, the amount of energy put into the process has always exceeded the energy output.

Uncontrolled nuclear fusion has been carried out many times in nuclear weapons testing, which results in a deliberate explosion. These explosions have always used the heavy isotopes of hydrogen, deuterium (H-2) and tritium (H-3), and never the much more common isotope of hydrogen (H-1), sometimes called "protium".

Building upon the nuclear transmutation experiments by Ernest Rutherford, carried out several years earlier, the fusion of the light nuclei (hydrogen isotopes) was first accomplished by Mark Oliphant in 1932. Then, the steps of the main cycle of nuclear fusion in stars were first worked out by Hans Bethe throughout the remainder of that decade.

Research into fusion for military purposes began in the early 1940s as part of the Manhattan Project, but this was not accomplished until 1951 (see the Greenhouse Item nuclear test), and nuclear fusion on a large scale in an explosion was first carried out on November 1, 1952, in the Ivy Mike hydrogen bomb test. Research into developing controlled thermonuclear fusion for civil purposes also began in the 1950s, and it continues to this day.Contents [hide]

1 Overview

2 Requirements

2.1 Gravitational Confinement

2.2 Magnetic confinement

2.3 Inertial confinement

2.4 Production methods

2.4.1 Muon-catalyzed fusion

2.4.2 Generally cold, locally hot fusion

2.4.3 Hot fusion

3 Important reactions

3.1 Astrophysical reaction chains

3.2 Criteria and candidates for terrestrial reactions

3.3 Neutronicity, confinement requirement, and power density

3.4 Bremsstrahlung losses in quasineutral, isotropic plasmas

 

Overview

Fusion of deuterium with tritium creating helium-4, freeing a neutron, and releasing 17.59 MeV of energy, as an appropriate amount of mass changing forms to appear as the kinetic energy of the products, in agreement with kinetic E = Δmc2, where Δm is the change in rest mass of particles.

Fusion reactions power the stars and produce virtually all elements in a process called nucleosynthesis.

Generally, when dealing with elements lighter than iron, the ratio of atomic mass to mass number is lower the heavier the nucleus is. This is known as mass defect. So fusion of lighter nuclei into heavier nuclei leads to loss of mass, even though no nucleons are lost. This lost mass is released as energy in accordance with E=mc2 (actually the mass is not changed into energy, rather the released energy carries the lost mass along with it).

Although the fusion of lighter elements in stars releases energy, production of elements heavier than iron absorbs energy.

When the fusion reaction is a sustained uncontrolled chain, it can result in a thermonuclear explosion, such as that generated by a hydrogen bomb. Non-self sustaining reactions can still release considerable energy, as well as large numbers of neutrons.

Research into controlled fusion, with the aim of producing fusion power for the production of electricity, has been conducted for over 50 years. It has been accompanied by extreme scientific and technological difficulties, but has resulted in progress. At present, break-even (self-sustaining) controlled fusion reactions have not been demonstrated in the few tokamak-type reactors around the world.[2] Workable designs for a reactor that theoretically will deliver ten times more fusion energy than the amount needed to heat up plasma to required temperatures (see ITER) were originally scheduled to be operational in 2018, however this has been delayed and a new date has not been stated.

It takes considerable energy to force nuclei to fuse, even those of the lightest element, hydrogen. This is because all nuclei have a positive charge (due to their protons), and as like charges repel, nuclei strongly resist being put too close together. Accelerated to high speeds (that is, heated to thermonuclear temperatures), they can overcome this electrostatic repulsion and get close enough for the attractive nuclear force to be sufficiently strong to achieve fusion. The fusion of lighter nuclei, which creates a heavier nucleus and often a free neutron or proton, generally releases more energy than it takes to force the nuclei together; this is an exothermic process that can produce self-sustaining reactions. The National Ignition Facility, which uses laser-driven inertial confinement fusion, is thought to be capable of break-even fusion.

The first large-scale laser target experiments were performed in June 2009 and ignition experiments are beginning early in 2011.

Energy released in most nuclear reactions is much larger than in chemical reactions, because the binding energy that holds a nucleus together is far greater than the energy that holds electrons to a nucleus. For example, the ionization energy gained by adding an electron to a hydrogen nucleus is 13.6 eV—less than one-millionth of the 17 MeV released in the deuterium–tritium (D–T) reaction shown in the diagram to the right. Fusion reactions have an energy density many times greater than nuclear fission; the reactions produce far greater energies per unit of mass even though individual fission reactions are generally much more energetic than individual fusion ones, which are themselves millions of times more energetic than chemical reactions. Only direct conversion of mass into energy, such as that caused by the collision of matter and antimatter, is more energetic per unit of mass than nuclear fusion.

Requirements

A substantial energy barrier of electrostatic forces must be overcome before fusion can occur. At large distances two naked nuclei repel one another because of the repulsive electrostatic force between their positively charged protons. If two nuclei can be brought close enough together, however, the electrostatic repulsion can be overcome by the attractive nuclear force, which is stronger at close distances.

When a nucleon such as a proton or neutron is added to a nucleus, the nuclear force attracts it to other nucleons, but primarily to its immediate neighbours due to the short range of the force. The nucleons in the interior of a nucleus have more neighboring nucleons than those on the surface. Since smaller nuclei have a larger surface area-to-volume ratio, the binding energy per nucleon due to the nuclear force generally increases with the size of the nucleus but approaches a limiting value corresponding to that of a nucleus with a diameter of about four nucleons. It is important to keep in mind that the above picture is a toy model because nucleons are quantum objects, and so, for example, since two neutrons in a nucleus are identical to each other, distinguishing one from the other, such as which one is in the interior and which is on the surface, is in fact meaningless, and the inclusion of quantum mechanics is necessary for proper calculations.

The electrostatic force, on the other hand, is an inverse-square force, so a proton added to a nucleus will feel an electrostatic repulsion from all the other protons in the nucleus. The electrostatic energy per nucleon due to the electrostatic force thus increases without limit as nuclei get larger.

At short distances the attractive nuclear force is stronger than the repulsive electrostatic force. As such, the main technical difficulty for fusion is getting the nuclei close enough to fuse.

The net result of these opposing forces is that the binding energy per nucleon generally increases with increasing size, up to the elements iron and nickel, and then decreases for heavier nuclei. Eventually, the binding energy becomes negative and very heavy nuclei (all with more than 208 nucleons, corresponding to a diameter of about 6 nucleons) are not stable. The four most tightly bound nuclei, in decreasing order of binding energy, are 62Ni,

58Fe,

56Fe, and

60Ni. Even though the nickel

isotope, 62Ni, is more stable, the iron isotope

56Fe is an order of magnitude more

common. This is due to a greater disintegration rate for 62Ni in the interior of stars

driven by photon absorption.

A notable exception to this general trend is the helium-4 nucleus, whose binding energy is higher than that of lithium, the next heaviest element. The Pauli exclusion principle provides an explanation for this exceptional behavior—it says that because protons and neutrons are fermions, they cannot exist in exactly the same state. Each proton or neutron energy state in a nucleus can accommodate both a spin up particle and a spin down particle. Helium-4 has an anomalously large binding energy because its nucleus consists of two protons and two neutrons; so all four of its nucleons can be in the ground state. Any additional nucleons would have to go into higher energy states.

The situation is similar if two nuclei are brought together. As they approach each other, all the protons in one nucleus repel all the protons in the other. Not until the two nuclei actually come in contact can the strong nuclear force take over. Consequently, even when the final energy state is lower, there is a large energy barrier that must first be overcome. It is called the Coulomb barrier.

The Coulomb barrier is smallest for isotopes of hydrogen—they contain only a single positive charge in the nucleus. A bi-proton is not stable, so neutrons must also be involved, ideally in such a way that a helium nucleus, with its extremely tight binding, is one of the products.

Using deuterium-tritium fuel, the resulting energy barrier is about 0.01 MeV.[citation needed] In comparison, the energy needed to remove an electron from hydrogen is 13.6 eV, about 750 times less energy. The (intermediate) result of the fusion is an unstable 5He nucleus, which immediately ejects a neutron with 14.1 MeV.[citation needed] The recoil energy of the remaining 4He nucleus is 3.5 MeV,[citation needed] so the total energy liberated is 17.6 MeV. This is many times more than what was needed to overcome the energy barrier.

If the energy to initiate the reaction comes from accelerating one of the nuclei, the process is called beam-target fusion; if both nuclei are accelerated, it is beam-beam fusion. If the nuclei are part of a plasma near thermal equilibrium, the process is called thermonuclear fusion. Temperature is a measure of the average kinetic energy of particles, so by heating the nuclei they will gain energy and eventually have enough to overcome this 0.01 MeV. Converting the units between electronvolts and kelvin shows that the barrier would be overcome at a temperature in excess of 120 million kelvins.

There are two effects that lower the actual temperature needed. One is the fact that temperature is the average kinetic energy, implying that some nuclei at this temperature would actually have much higher energy than 0.01 MeV, while others would be much lower. It is the nuclei in the high-energy tail of the velocity distribution that account for most of the fusion reactions. The other effect is quantum tunneling. The nuclei do not actually have to have enough energy to overcome the Coulomb barrier completely. If they have nearly enough energy, they can tunnel through the remaining barrier. For this reason fuel at lower temperatures will still undergo fusion events, at a lower rate.

 

The fusion reaction rate increases rapidly with temperature until it maximizes and then gradually drops off. The DT rate peaks at a lower temperature (about 70 keV, or 800 million kelvin) and at a higher value than other reactions commonly considered for fusion energy.

The reaction cross section σ is a measure of the probability of a fusion reaction as a function of the relative velocity of the two reactant nuclei. If the reactants have a distribution of velocities, e.g. a thermal distribution with thermonuclear fusion, then it is useful to perform an average over the distributions of the product of cross section and velocity. The reaction rate (fusions per volume per time) is <σv> times the product of the reactant number densities:

If a species of nuclei is reacting with itself, such as the DD reaction, then the product n1n2 must be replaced by (1 / 2)n2.

increases from virtually zero at room temperatures up to meaningful magnitudes at temperatures of 10–100 keV. At these temperatures, well above typical ionization energies (13.6 eV in the hydrogen case), the fusion reactants exist in a plasma state.

The significance of  as a function of temperature in a device with a particular energy confinement time is found by considering the Lawson criterion.

Gravitational Confinement

One force capable of confining the fuel well enough to satisfy the Lawson criterion is gravity. The mass needed, however, is so great that gravitational confinement is only found in stars–the least massive stars capable of sustained fusion are red dwarfs, while brown dwarfs are able to fuse deuterium and lithium if they are of sufficient mass. In stars heavy enough, after the supply of hydrogen is exhausted in their cores, their cores (or a shell around the core) start fusing helium to carbon. In the most massive stars (at least 8-11 solar masses), the process is continued until some of their energy is produced by fusing lighter elements to iron. As iron has one of the highest binding energies, reactions producing heavier elements are generally endothermic. Therefore significant amounts of heavier elements are not formed during stable periods of massive star evolution, but are formed in supernova explosions. Some lighter stars also form these elements in the outer parts of the stars over long periods of time, by absorbing energy from fusion in the inside of the star, by absorbing neutrons that are emitted from the fusion process.

All of the elements heavier than iron have some potential energy to release, in theory. At the entremely heavy end of element production, these heavier elements can produce energy in the process of being split again back toward the size of iron, in the process of nuclear fission. Nuclear fission thus releases energy which has been stored, sometimes billions of years before, during stellar nucleosynthesis.

Magnetic confinement

Main article: Magnetic confinement fusion

Electrically charged particles (such as fuel ions) will follow magnetic field lines (see Guiding center). The fusion fuel can therefore be trapped using a strong magnetic field. A variety of magnetic configurations exist, including the toroidal geometries of tokamaks and stellarators and open-ended mirror confinement systems.

Inertial confinement

Main article: Inertial confinement fusion

A third confinement principle is to apply a rapid pulse of energy to a large part of the surface of a pellet of fusion fuel, causing it to simultaneously "implode" and heat to very high pressure and temperature. If the fuel is dense enough and hot enough, the fusion reaction rate will be high enough to burn a significant fraction of the fuel before it has dissipated. To achieve these extreme conditions, the initially cold fuel must be explosively compressed. Inertial confinement is used in the hydrogen bomb, where the driver is x-rays created by a fission bomb. Inertial confinement is also attempted in "controlled" nuclear fusion, where the driver is a laser, ion, or electron beam, or a Z-pinch. Another method is to use conventional high explosive material to compress a fuel to fusion conditions. The UTIAS explosive-driven-implosion facility was used to produce stable, centered and focused hemispherical implosions[8] to generate neutrons from D-D reactions. The simplest and most direct method proved to be in a predetonated stoichiometric mixture of deuterium-oxygen. The other successful method was using a miniature Voitenko compressor,[9] where a plane diaphragm was driven by the implosion wave into a secondary small spherical cavity that contained pure deuterium gas at one atmosphere.[10]

Some confinement principles have been investigated, such as muon-catalyzed fusion, the Farnsworth–Hirsch fusor and Polywell (inertial electrostatic confinement), and bubble fusion.

Production methods

A variety of methods are known to effect nuclear fusion. Some are "cold" in the strict sense that no part of the material is hot (except for the reaction products), some are "cold" in the limited sense that the bulk of the material is at a relatively low temperature and pressure but the reactants are not, and some are "hot" fusion methods that create macroscopic regions of very high temperature and pressure.

Muon-catalyzed fusion

Muon-catalyzed fusion is a well-established and reproducible fusion process that occurs at ordinary temperatures. It was studied in detail by Steven Jones in the early 1980s. It has not been reported to produce net energy. Net energy production from this reaction cannot occur because of the energy required to create muons, their 2.2 µs half-life, and the chance that a muon will bind to the new alpha particle and thus stop catalyzing fusion.[11]

Generally cold, locally hot fusion

Accelerator-based light-ion fusion is a technique using particle accelerators to achieve particle kinetic energies sufficient to induce light-ion fusion reactions. Accelerating light ions is relatively easy, and can be done in an efficient manner—all it takes is a vacuum tube, a pair of electrodes, and a high-voltage transformer; fusion can be observed with as little as 10 kV between electrodes. The key problem with accelerator-based fusion (and with cold targets in general) is that fusion cross sections are many orders of magnitude lower than Coulomb interaction cross sections. Therefore the vast majority of ions end up expending their energy on bremsstrahlung and ionization of atoms of the target. Devices referred to as sealed-tube neutron generators are particularly relevant to this discussion. These small devices are miniature particle accelerators filled with deuterium and tritium gas in an arrangement that allows ions of these nuclei to be accelerated against hydride targets, also containing deuterium and tritium, where fusion takes place. Hundreds of neutron generators are produced annually for use in the petroleum industry where they are used in measurement equipment for locating and mapping oil reserves. Despite periodic reports in the popular press by scientists claiming to have invented "table-top" fusion machines, neutron generators have been around for half a century. The sizes of these devices vary but the smallest instruments are often packaged in sizes smaller than a loaf of bread. These devices do not produce a net power output.

Sonofusion or bubble fusion, a controversial variation on the sonoluminescence theme, suggests that acoustic shock waves, creating temporary bubbles (cavitation) that expand and collapse shortly after creation, can produce temperatures and pressures sufficient for nuclear fusion.[12]

The Farnsworth–Hirsch fusor is a tabletop device in which fusion occurs. This fusion comes from high effective temperatures produced by electrostatic acceleration of ions. The device can be built inexpensively, but it too is unable to produce a net power output.

The Polywell is a concept for a tabletop device in which fusion occurs. The device is a non-thermodynamic equilibrium machine that uses electrostatic confinement to accelerate ions into a center where they fuse together.

Antimatter-initialized fusion uses small amounts of antimatter to trigger a tiny fusion explosion. This has been studied primarily in the context of making nuclear pulse propulsion, and pure fusion bombs feasible. This is not near becoming a practical power source, due to the cost of manufacturing antimatter alone.

Pyroelectric fusion was reported in April 2005 by a team at UCLA. The scientists used a pyroelectric crystal heated from −34 to 7 °C (−29 to 45 °F), combined with a tungsten needle to produce an electric field of about 25 gigavolts per meter to ionize and accelerate deuterium nuclei into an erbium deuteride target. Though the energy of the deuterium ions generated by the crystal has not been directly measured, the authors used 100 keV (a temperature of about 109 K) as an estimate in their modeling.[13] At these energy levels, two deuterium nuclei can fuse together to produce a helium-3 nucleus, a 2.45 MeV neutron and bremsstrahlung. Although it makes a useful neutron generator, the apparatus is not intended for power generation since it requires far more energy than it produces.

Hot fusion

In hot fusion, the fuel reaches tremendous temperature and pressure inside a fusion reactor or nuclear weapon (or star).

The methods in the second group are examples of non-equilibrium systems, in which very high temperatures and pressures are produced in a relatively small region adjacent to material of much lower temperature. In his doctoral thesis for MIT, Todd Rider did a theoretical study of all quasineutral, isotropic, non-equilibrium fusion systems. He demonstrated that all such systems will leak energy at a rapid rate due to bremsstrahlung produced when electrons in the plasma hit other electrons or ions at a cooler temperature and suddenly decelerate. The problem is not as pronounced in a hot plasma because the range of temperatures, and thus the magnitude of the deceleration, is much lower. Note that Rider's work does not apply to non-neutral and/or anisotropic non-equilibrium plasmas.

Информация о работе Разделение изотопов и применение их в ядерном реакторе