Автор работы: Пользователь скрыл имя, 18 Апреля 2012 в 19:28, курсовая работа
В теоретической части рассмотрим виды средних величин, а именно: средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая, средняя кубическая и структурные средние - в экономическом анализе, а также условия их применения.
В расчетной части представлены задачи на нахождение средних величин, на примере этих задач будут показаны различные способы нахождения средних величин, и использование их в экономическом анализе.
В аналитической части будет проведено исследование в результате которого, будет найдена средняя цена товара.
ВВЕДЕНИЕ 3
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 4
1.1 СРЕДНИЕ ВЕЛИЧИНЫ В ЭКОНОМИЧЕСКОМ АНАЛИЗЕ 4
1.2УСЛОВИЯ ПРИМЕНЕНИЯ СРЕДНИХ ВЕЛИЧИН В АНАЛИЗЕ 8
1.3ВИДЫ СРЕДНИХ ВЕЛИЧИН. 10
1.3.1 СРЕДНЯЯ АРИФМЕТИЧЕСКАЯ 13
1.3.2 СРЕДНЯЯ ГАРМОНИЧЕСКАЯ 17
1.3.3 СРЕДНЯЯ ГЕОМЕТРИЧЕСКАЯ 20
1.3.4 СРЕДНЯЯ КВАДРАТИЧЕСКАЯ И СРЕДНЯЯ КУБИЧЕСКАЯ 21
1.3.5 СТРУКТУРНЫЕ СРЕДНИЕ 23
РАСЧЕТНАЯ ЧАСТЬ 28
АНАЛИТИЧЕСКАЯ ЧАСТЬ 51
ЗАКЛЮЧЕНИЕ 53
СПИСОК ЛИТЕРАТУРЫ 55
Выбор формы средней обусловлен исходным соотношением, суть которого приводилась выше. Существует порядок расчета средней величины:
1. Определение исходного соотношения для исследуемого показателя.
2. Определение недостающих данных для расчета исходного соотношения.
3. Расчет средней величины.
Рассмотрим некоторые виды средних, которые наиболее часто используются в статистике. Для этого введем следующие понятия и обозначения:
Признак, по которому находится средняя, называемый осередняемым признаком, обозначим буквой "х"
Значения признака, которые встречаются у группы единиц или отдельных единиц совокупности (не повторяясь) называются вариантами признака и обозначаются через x1, x2, x3 и т.д. Средняя величина этих значений обозначается через " " .
Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.
Отдельные значения признака называют вариантами и обозначают через х (); число единиц совокупности обозначают через n, среднее значение признака - через . Следовательно, средняя арифметическая простая равна:
Например, имеются следующие данные о производстве рабочими продукции (табл. 2)
Таблица 2 - Количество изделий, выпущенных за смену
№ раб. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Выпущено изделий за смену |
16 |
17 |
18 |
17 |
16 |
17 |
18 |
20 |
21 |
18 |
В данном примере варьирующий признак - выпуск продукции за смену.
Численные значения признака (16, 17 и т. д.) называют вариантами. Определим среднюю выработку продукции рабочими данной группы:
Простая средняя арифметическая применяется в случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя исчисляется иначе.
Средняя арифметическая взвешенная вычисляется по формуле , где fi - частота повторения i-ых вариантов признака, называемая весом. Таким образом, средняя арифметическая взвешенная равна сумме взвешенных вариантов признака, деленная на сумму весов. Она применяется в тех случаях, когда каждая варианта признака встречается несколько (неравное) число раз.
Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами. В таких рядах условно величина интервала первой группы принимается равной величине интервала последующей, а величина интервала последней группы - величине интервала предыдущей. Дальнейший расчет аналогичен изложенному выше.
При расчете средней по интервальному вариационному ряду необходимо сначала найти середину интервалов. Это и будут значения xi, а количество единиц совокупности в каждой группе fi (таблица 3).
Таблица 3 - Распределения числа рабочих цеха по возрасту.
Возраст рабочего, лет | Число рабочих, чел (fi) | Середина возрастного интервала, лет (xi) |
20-30 30-40 40-50 50-60 60 и более | 7 13 48 32 6 | 25 35 45 55 65 |
Итого | 106 | Х |
Средний возраст рабочих цеха будет равен лет.
Для упрощения расчета средней используют «способ моментов» (способ отсчета от условного нуля).
Способ моментов предполагает следующие действия:
- Если возможно, то уменьшаются веса.
- Выбирается начало отсчета – условный нуль. Обычно выбирается с таким расчетом, чтобы выбранное значение признака было как можно ближе к середине распределения. Если распределение по своей форме близко к нормальному, но за начало отсчета выбирают признак, обладающий наибольшим весом.
- Находятся отклонения вариантов от условного нуля.
- Если эти отклонения содержат общий множитель, то рассчитанные отклонения делятся на этот множитель.
Находится среднее значение признака по следующей формуле
,
где A - значение одного из центральных вариантов с наибольшей частотой
i - величина интервала.
Пример: А= 45; i=10
Таблица 4 - Распределение рабочих по возрасту.
Возраст рабочего, лет | Число рабочих, чел (fi) | Середина возрастного интервала, лет (xi) | x1= (x-A)/i | x1f |
20-30 30-40 40-50 50-60 60 и более | 7 13 48 32 6 | 25 35 45 55 65 | -2 -1 0 1 2 | -14 -13 0 32 12 |
Итого | 106 | Х |
| 17 |
x1 – новые варианты признака
.
.
Как видно из примера средняя величина, полученная в результате использования способа моментов отличается от средней, рассчитанной по формуле взвешенной средней. Неточность объясняется, по-видимому, предположением о равномерном распределении единиц признака внутри группы, а так же большим интервалом.
В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.
Средняя арифметическая обладает рядом свойств:
1. От уменьшения или увеличения частот каждого значения признака х в n раз величина средней арифметической не изменится.
Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.
2. Общий множитель индивидуальных значений признака может быть вынесен за знак средней:
3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:
4. Если х = с, где с - постоянная величина, то .
5. Сумма отклонений значений признака Х от средней арифметической х равна нулю:
Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной. Применяется она тогда, когда необходимые веса (fi) в исходных данных не заданы непосредственно, а входят сомножителем в одни из имеющихся показателей.
Средняя гармоническая простая рассчитывается по формуле
,
т.е. это обратная величина средней арифметической простой из обратных значений признака.
Например, бригада токарей была занята обточкой одинаковых деталей в течение 8-часового рабочего дня. Первый токарь затратил на одну деталь 12 мин, второй - 15 мин., третий - 11, четвертый - 16 и пятый - 14 мин. Определите среднее время, необходимое на изготовление одной детали.
На первый взгляд кажется, что задача легко решается по формуле средней арифметической простой:
Полученная средняя была бы правильной, если бы каждый рабочий сделал только по одной детали. Но в течение дня отдельными рабочими было изготовлено различное число деталей. Для определения числа деталей, изготовленных каждым рабочим, воспользуемся следующим соотношением:
Среднее время, затраченное = ------------------------------
на одну деталь
Число деталей, изготовленных каждым рабочим, определяется отношением всего времени работы к среднему времени, затраченному на одну деталь. Тогда среднее время, необходимое для изготовления одной детали, равно:
Это же решение можно представить иначе:
Таким образом, формула для расчета средней гармонической простой будет иметь вид:
Средняя гармоническая взвешенная:
, где f=w/x
Например, необходимо определить среднюю цену 1 кг картофеля по трем коммерческим магазинам (таблица 5):
Таблица 5 - Цена и выручка от реализации по трем коммерческим магазинам.
Номер магазина | Цена картофеля руб./кг, х | Выручка от реализации, млн руб., w | Частота (количество реализованных единиц), кг f=w/x |
1 2 3 | 800 1000 900 | 24 15 18 | 30000 15000 20000 |
Итого | - | 57 | 65000 |
Информация о работе Средние величины в экономическом анализе