Автор работы: Пользователь скрыл имя, 17 Января 2014 в 23:38, реферат
Физиология растений относится к биологическим наукам. Биология — наука о жизни — издавна разделялась на два основных направления: анатомо-морфологическое и физиологическое. Как всякая классификация, такое разделение условно. Действительно, как изучать отдельные органы, не принимая во внимание их функции, или изучать процессы, не касаясь тех структур, где они локализованы? В последнее время биологи стремятся теснее связать процессы с определенными внутренними структурами. Так, например, для понимания процесса дыхания важное значение имеет изучение микроскопической и субмикроскопической структуры митохондрий, где этот процесс локализован. Биологические функции многих макромолекул связаны с их формой. Хорошо известно решающее значение двухцепо-чечпой структуры ДНК.
Важным свойством молекул
Физические свойства хлорофилла
Хлорофилл способен к избирательному поглощению света и к флюоресценции. Спектр поглощения данного соединения определяется его способностью поглощать свет определенной длины волны (оп
Рис. 33. Спектры поглощения хлорофиллов а и Ь.
ределенного цвета). Для того чтобы получить спектр поглощения, К. А. Тимирязев пропускал луч света сначала через раствор хлорофилла, а затем через призму. В этом случае часть лучей поглощалась. Было показано, что хлорофилл в той же концентрации, как в листе, имеет две основные линии поглощения в красных и сине-фиолетовых лучах (рис. 33). При этом хлорофилл а в растворе имеет максимумы поглощения 429 и 660 нм, тогда как хлорофилл b — 453 и 642 нм. Однако необходимо учитывать, что в листе спектры поглощения хлорофилла меняются в зависимости от его состояния, степени агрегации, адсорбции на определенных белках. В настоящее время показано, что есть формы хлорофилла, поглощающие свет с длиной волны 700, 710 и даже до 720 нм. Формы хлорофилла, поглощающие свет с большой длиной волны, имеют особенно важное значение в процессе фотосинтеза. Хлорофилл обладает способностью к флюоресценции. Флюоресценция представляет собой свечение тел, возбуждаемое освещением и продолжающееся очень короткий промежуток времени (10~8—10~9 с). Свет, испускаемый при флюоресценции, имеет всегда большую длину волны по сравнению с поглощенным. Это связано с тем, что часть поглощенной энергии выделяется в виде тепла. Хлорофилл обладает красной флюоресценцией.
Биосинтез хлорофилла
Синтез хлорофилла происходит в две фазы: темновую — до про-тохлорофиллида и световую — образование из протохлорофиллида хлорофилла (рис. 34). Для превращения протохлорофиллида в хло
рофиллид необходимо его связывание с белком голохромом и присоединение двух атомов водорода. Именно последняя реакция для большинства растений протекает с использованием энергии света (фотовосстановление) :
свет
протохлорофиллид + 2Н+ у хлорофиллид
Водороды присоединяются к 7-му и 8-му атомам углерода. На последнем этапе к хлорофиллиду присоединяется спирт фитол:
хлорофиллид + фитол -> хлорофилл
Поскольку синтез хлорофилла — процесс многоэтапный в нем участвуют различные ферменты, составляющие, по-видимому, поли-ферментныи комплекс. Интересно заметить, что образование многих из этих белков-ферментов ускоряется на свету. Содержание хлорофилла в листе колеблется незначительно. Это связано с тем, что идет непрерывный процесс разрушения старых молекул и образование новых молекул хлорофилла. Причем эти два процесса уравновешивают друг друга. При этом предполагается, что вновь образовавшиеся молекулы хлорофилла не смешиваются со старыми и имеют несколько иные свойства.
Условия образования хлорофилла
Проростки, выросшие в отсутствии света, называют этиолированными. Такие проростки, как правило, характеризуются измененной формой (вытянутые стебли, неразвившиеся листья) и слабой желтой окраской (хлорофилла в них нет). Вместе с тем, еще со времен Сакса (1864) известно, что в некоторых случаях хлорофилл образуется и в отсутствии света. Способность образовывать хлорофилл в темноте характерна для растений, стоящих на нижней ступени эволюционного процесса. Так, при благоприятных условиях питания некоторые бактерии могут синтезировать в темноте желто-зеленый пигмент — бак-териохлорофилл. Сине-зеленые водоросли при достаточном снабжении органическим веществом растут и образуют пигменты в темноте.
Способность к образованию хлорофилла в темноте обнаружена и у таких высокоорганизованных водорослей, как харовые. Лиственные и печеночные мхи сохраняют способность образовывать хлорофилл в темноте. Почти у всех видов хвойных при прорастании семян в темноте семядоли зеленеют. Более развита эта способность у теневыносливых пород хвойных деревьев. По мере роста проростков в темноте образовавшийся хлорофилл разрушается, и на 35—40-й день проростки в отсутствии света погибают. Интересно заметить, что проростки хвойных, выращенные из изолированных зародышей в темноте, хлорофилла не образуют. Однако достаточно присутствия небольшого кусочка нераздробленного эндосперма, чтобы проростки начинали зеленеть.
Зеленение происходит даже в том
случае, если зародыш соприкасается
с эндоспермом другого вида хвойных деревьев.
При этом наблюдается прямая корреляция
между величиной окислительно-
В целом рассмотрение этого вопроса приводит к заключению, что в эволюционном плане хлорофилл первоначально образовался как побочный продукт процесса темнового обмена. Однако в дальнейшем на свету растения, обладающие хлорофиллом, получили большее преимущество благодаря возможности использовать энергию солнечного света, и зта особенность была закреплена естественным отбором.
Исследования влияния света на накопление хлорофилла в этиолированных проростках показали, ..что первым в процессе зеленения появляется хлорофилл а. Нормальное соотношение хлорофилла а к хлорофиллу b (3:1) наступает только через несколько часов после начала освещения. По мнению А. А. Шлыка, хлорофилл Ь образуется из хлорофилла а.
Спектрографический апализ показывает,
что процесс образования
При исследовании влияния качества света на образование хлорофилла в большинстве случаев проявилась положительная роль красного света. Большее значение имеет интенсивность освещения. Существование нижнего предела освещенности для образования хлорофилла было показано в опытах В. Н. Любименко для проростков ячменя и овса. Оказалось, что освещение электрической лампой мощностью 10 Вт на расстоянии 400 см было пределом, ниже которого образование хлорофилла прекращалось. Существует и верхний предел освещенности, выше которого образование хлорофилла тормозится.
Целый ряд исследований показывает, что образование хлорофилла идет интенсивнее на прерывистом свете. Это подтверждает, что в образовании хлорофилла имеется темновая и световая фазы. При этом световая фаза значительно короче темновой.
Образование хлорофилла зависит от температуры. Оптимальная температура для накопления хлорофилла 26—30°С. Как и следовало ожидать, от температуры зависит лишь образование предшественников хлорофилла (темновая фаза). При наличии уже образовавшихся предшественников хлорофилла процесс зеленения (световая фаза) идет с одинаковой скоростью независимо от температуры.
На скорость образования хлорофилла оказывает влияние содержание воды. Сильное обезвоживание проростков приводит к полному прекращению образования хлорофилла. Особенно чувствительно к обезвоживанию образование протохлорофиллида.
Еще В. И. Палладии обратил внимание на необходимость углеводов для протекания процесса зеленения. Именно с этим связано то, что зеленение этиолированных проростков на свету зависит от их возраста. После 7—9-дневного возраста способность к образованию хлорофилла у таких проростков резко падает. При опрыскивании сахарозой проростки снова начинают интенсивно зеленеть.
Важпейшее значение для образования хлорофилла имеют условия минерального питания. Прежде всего необходимо достаточное количество железа. При недостатке железа даже листья взрослых растений теряют окраску. Это явление названо хлорозом. Железо — необходимый катализатор образования хлорофилла. Оно необходимо на этапе синтеза о-аминолевулииовой кислоты из глицина и сукци-нил-КоА, а также синтеза протопорфирина. Большое значение для обеспечения синтеза хлорофилла имеет нормальное снабжение растений азотом и магнием, так как оба эти элемента входят в состав хлорофилла. При недостатке меди хлорофилл легко разрушается. Это, по-видимому, связано с тем, что медь способствует образованию устойчивых комплексов менаду хлорофиллом и соответствующими белками.
Исследование процесса накопления хлорофилла у растений в течение вегетационного периода показало, что максимальное содержание хлорофилла приурочено к началу цветения. Есть даже мнение, что повышение образования хлорофилла может быть использовано как индикатор, указывающий на готовность растений к цветению. Синтез хлорофилл-а зависит от деятельности корневой системы. Так, при прививках содержание хлорофилла в листьях привоя зависит от свойств корневой системы подвоя. Возможно, что влияние корневой системы связано с тем, что там образуются гормоны (цитокинины). У двудомных растений большим содержанием хлорофилла характеризуются листья женских особей.
2. КАРОТИНОИДЫ
Наряду с зелеными пигментами в хлоропластах и хроматофорах содержатся пигменты, относящиеся к группе каротиноидов. Каротиноиды — это желтые и оранжевые пигменты алифатического строения, производные изопрена. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротиноиды, содержащие кислород, получили название ксантофиллов. Основными представителями каротиноидов у высших растений являются два пигмента — fi-каротин (оранжевый) С40Н56 и ксантофилл (желтый) С40Н56О2. Каротин состоит из 8 изопреновых остатков (рис. 35). При разрыве углеродной цепочки пополам и образовании на конце спиртовой группы, каротин превращается в 2 молекулы витамина А. Обращает на себя внимание сходство в структуре фитола — спирта, входящего в состав хлорофилла, и углеродной цепочки, соединяющей ци-клогексениловые кольца каротина. Предполагается, что фитол возникает как продукт гидрирования этой части молекулы каротиноидов. Каротиноиды имеют большое количество конъюгированных двойных связей, поэтому они способны к окислительно-восстановительным реакциям. Поглощение света каротиноидами, а следовательно, их окраска также обусловлены наличием конъюгированных двойных связей. Р-каротин имеет два максимума поглощения, соответствующие длинам волн 482 и 452 нм. Красные лучи, иоглощаемые хлоро-филлами, каротиноиды не поглощают. Каротиноиды, в отличие от хлорофилла, не обладают способностью к флюоресценции. Подобно
хлорофиллу каротиноиды в
Физиологическая роль каротиноидов. Уже тот факт, что кароти---ноиды всегда присутствуют в хлоропластах, позволяет считать, что они принимают участие в процессе фотосинтеза. Однако не отмечено ни одного случая, когда в отсутствии хлорофилла этот процесс осуществляется, поэтому считают, что роль каротиноидов вспомогательная.
В настоящее время
Физиологическая роль каротиноидов не ограничивается их участием в передаче энергии на молекулы хлорофилла. По данным советского исследователя Д. И. Сапожникова, на свету происходит взаимопревращение ксантофиллов (виолоксантин превращается в зеак-сантин), что сопровождается выделением кислорода. Спектр действия этой реакции совпадает со спектром поглощения хлорофилла, что позволило высказать предположение об ее участии в процессе фотосинтеза.
Имеются данные, что каротиноиды выполняют защитную функцию, предохраняя различные органические вещества, в первую очередь молекулы хлорофилла, от разрушения на свету в процессе фотоокисления. Опыты, проведенные на мутантах кукурузы и подсолнечника, показали, что они содержат протохлорофиллид (темновой предшественник хлорофилла), который на свету переходит в хлорофилл а, но разрушается. Последнее связано с отсутствием способности исследованных мутантов к образованию каротиноидов.
Ряд исследователей указывает, что каротиноиды играют определенную роль в половом процессе у растений. Известно, что в период цветения высших растений содержание каротиноидов в листьях уменьшается. Одновременно оно заметно растет в пыльниках, а также в лепестках цветков. По мнению П. М. Жуковского, микроспоро-генез тесно связан с метаболизмом каротиноидов. Незрелые пыльцевые зерна имеют белую окраску, а созревшая пыльца — желто-оранжевую. В половых клетках водорослей наблюдается дифференцированное распределение пигментов. Мужские гаметы имеют желтую окраску и содержат каротиноиды. Женские гаметы содержат хлорофилл. Высказывается мнение, что именно каротин обусловливает подвижность сперматозоидов. По данным В. Мевиуса, материнские клетки водоросли хламидомонады образуют половые клетки (гаметы) первоначально без жгутиков, в этот период они еще не могут передвигаться в воде. Жгутики образуются только после освещения гамет длинноволновыми лучами, которые улавливаются особым каротинои-
дом — кроцином.
Образование каротиноидов. Синтез каротиноидов не требует света. При формировании листьев каротиноиды образуются и накапливаются в пластидах еще в тот период, когда зачаток листа защищен в почке от действия света. При начале освещения образование хло-рофилла в этиолированных проростках сопровождается временным падением содержания каротиноидов. Однако затем содержание каротиноидов восстанавливается и даже повышается с увеличением интенсивности освещения. Показана тесная зависимость образования каротиноидов от азотного обмена. Установлено, что между содержанием белка и каротиноидов имеется прямая коррелятивная связь. Потеря белка и каротиноидов в срезанных листьях идет параллельно. Образование .каротиноидов зависит от источника азотного питания. Более благоприятные результаты по накоплению каротиноидов получены при выращивании растений на нитратном фоне по сравнению с аммиачным. Недостаток серы резко уменьшает содержание каротиноидов.