Автор работы: Пользователь скрыл имя, 11 Апреля 2015 в 17:29, реферат
Цепи Маркова широко используются в экономических исследованиях – в частности, при изучении систем массового обслуживания. Примерами процессов массового обслуживания могут служить, в частности: обслуживание покупателей в сфере розничной торговли, транспортное обслуживание, ремонт аппаратуры, машин и механизмов, находящихся в эксплуатации, обработка документов в системе управления и т.п.
1. Цепи Маркова………………………………………………………………3
1.1 Цепи Маркова с дискретным временем………………………………3
1.2 Цепи Маркова с непрерывным временем…………………………….5
1.3 Классификация состояний марковских цепей……………………….7
1.4 Области применения цепей Маркова…………………………………8
2. Описание Mathcad………………………………………………………...10
2.1 Краткие сведения……………………………………………………..10
2.2 Панели инструментов………………………………………………...11
2.3 Справочная информация…………………………………………… 14
2.4 Ввод и редактирование формул. Элементы интерфейса редактора формул…………………………………………………………………15
2.5 Математические выражения и встроенные функции………………18
2.6 Переменные и оператор присваивания……………………………...20
2.7 Типы чисел…………………………………………………………….21
2.8 Графики. Типы графиков. Построение графика……………………24
2.9 Операторы……………………………………………………………..28
2.10Некоторые алгебраические преобразования……………………….31
2.11 Пример решения задачи с помощью Mathcad……………………..35
Список использованных источников……………………………………36
Примеры действия логических операторов приведены в листингах 2.1 и 2.2.
Листинг 2.1. Операторы сравнения:
Листинг 2.1. Булевы операторы:
Матричные операторы предназначены для совершения различных действий над векторами и матрицами. Поскольку большинство из них реализует численные алгоритмы, о них будет подробно рассказано в разделах, посвященных линейной алгебре (см. главу 7). Остановимся в данном разделе лишь на вопросе вставки матриц в документы Mathcad.
Самый простой и наглядный способ создания вектора или матрицы заключается в следующем:
Добавление в уже созданную матрицу строк или столбцов производится точно так же:
Вычислительные операторы сгруппированы на панели Evaluation (Вычисления) (см. разд. 1.2.1). Перечислим их еще раз (без дополнительных комментариев):
В этом разделе речь пойдет об алгебраических вычислениях, которые выполняются в Mathcad, главным образом, аналитически. Как ни странно, многие пользователи Mathcad не очень хорошо осведомлены об этих возможностях, тогда как они во многих ситуациях могут существенно сэкономить их время и силы по выполнению несложных, но рутинных преобразований.
Символьные вычисления в Mathcad можно осуществлять в двух различных вариантах:
Первый способ более удобен, когда требуется быстро получить какой-либо аналитический результат для однократного использования, не сохраняя сам ход вычислений. Второй способ более нагляден, т. к. позволяет записывать выражения в традиционной математической форме и сохранять символьные вычисления в документах Mathcad. Кроме того, аналитические преобразования, проводимые через меню, касаются только одного, выделенного в данный момент, выражения.
Символьный процессор Mathcad умеет выполнять основные алгебраические преобразования, такие как упрощение выражений, разложение их на множители, символьное суммирование и перемножение.
Для символьных вычислений при помощи команд предназначено главное менюSymbolics (Символика), объединяющее математические операции, которые Mathcad умеет выполнять аналитически. Для реализации второго способа применяются все средства Mathcad, пригодные для численных вычислений (например, панели Calculator, Evaluation и т. д.), и специальная математическая панель инструментов, которую можно вызвать на экран нажатием кнопки Symbolic Keyword Toolbar (Панель символики) на панели Math(Математика). На панели Symbolic (Символика) находятся кнопки, соответствующие специфическим командам символьных преобразований (рис. 2.12). Например, таким как разложение выражения на множители, приведение подобных слагаемых и другим операциям, которые в Mathcad нельзя проводить численно, и для которых, соответственно, не предусмотрены встроенные функции.
Рассмотрим оба типа символьных вычислений на простом примере разложения на сомножители выражения cos (4х). В ходе операции символьного разложения, или расширения, раскрываются все суммы и произведения, а сложные тригонометрические зависимости разлагаются с помощью тригонометрических тождеств. Разложение выражений производится путем выбора команды Symbolics › Expand (Символика › Разложить) либо использованием вместе с оператором символьного вывода ключевого слова expand.
После этого результат разложения выражения появится чуть ниже в виде еще одной строки (рис. 2.13).
Упрощение выражений – очень часто применяемая операция, противоположная по смыслу операции разложения, рассмотренной в предыдущем разделе. Символьный процессор Mathcad стремится так преобразовать выражение, чтобы оно приобрело более простую форму. При этом используются различные арифметические формулы, приведение подобных слагаемых, тригонометрические тождества, пересчет обратных функций и др. Чтобы упростить выражение с помощью меню (рис. 2.17):
Условие задачи: Исследовать цепь Маркова с тремя состояниями. Вычислить значения предельных вероятностей по двум разным формулам.
Составляем матрицу переходных вероятностей:
Производим вычисления по формуле с помощью определителей.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. http://5forstudents.ru/
2. http://5forstudents.ru/
3. http://xreferat.ru/54/199-1-
4. https://ru.wikipedia.org/wiki/
5. http://solidbase.karelia.ru/
6. http://samoucka.ru/