Метод анализа иерархий

Автор работы: Пользователь скрыл имя, 26 Ноября 2012 в 16:01, реферат

Краткое описание

Метод анализа иерархий разработан американским математиком Т. Саати (Питтсбурский университет) в 70-е гг. МАИ получил широкое распространение и применяется в самых разнообразных отраслях. Сегодня его используют уже повсеместно от риэлтеров, при оценке недвижимости, до кадровиков, при замещении вакантных должностей. Кроме того, необходимо отметить, что в России этот метод получает все большее распространение в различных видах маркетинговых исследований, определении сценариев развития города, оценке различных коммерческих рисков и т.д.

Содержание

Введение………………………………………………………………………………...
3
1. Иерархии……………………………………………………………………………..
4
1.1. Понятие иерархии………………………………………………………………
4
1.2. Преимущества иерархий……………………………………………………….
6
1.3. Построение иерархии…………………………………………………………..
7
2. Приоритеты в иерархиях……………………………………………………………
9
3. Интуитивное обоснование метода………………………………………………….
14
4. Иерархии и суждения, получаемые с помощью анкетирования………………….
17
5. Тесты на точность, среднеквадратичное отклонение и медианное абсолютное отклонение………………………………………………………………………………

18
6. Основные понятия метода анализа иерархий………………………………………
19
7. Применение метода анализа иерархий в психотерапии…………………………...
22
Список литературы

Вложенные файлы: 1 файл

Реферат.doc

— 442.00 Кб (Скачать файл)

 

Обозначим значения шкалы, располагая их в ряд от одного крайнего значения к равенству и затем вновь повышая их до второго крайнего значения. В левом столбце перечислим все альтернативы, которые нужно сравнить по степени превосходства с другими альтернативами из правого столбца. Всего каждый столбец содержит альтернатив. Затем эксперты должны отметить суждение, которое выражает превосходство элемента из левого столбца над соответствующим элементом из правого столбца, расположенном в той же строке. Если такое превосходство в действительности имеет место, то одна из позиций левее равенства будет отмечена. В противном случае будет отмечено равенство, или некоторая позиция справа. То же проделываем и для других альтернатив (см. таблицу 2) [2].

 

5. Тесты на точность, среднеквадратичное отклонение

и медианное  абсолютное отклонение

Значительный интерес  представляет вопрос о близости вектора  приоритетов, полученного методом анализа иерархий, к «действительному» вектору приоритетов. Одним из способов установления этой близости является применение метода к ситуациям, в которых возможно определение фактических чисел. Для таких случаев проверим, насколько точен вектор приоритетов.

Для проверки точности необходимо сравнить оценки в экспериментах с действительными ответами, которые известны. Сравнение чисел включает использование статистических мер. Для подтверждения теоретических результатов в сравнении с реальностью имеется немного мер. Две из них - среднеквадратичное отклонение и медианное абсолютное отклонение от медианы Обычно они используются для сравнения - выбора среди нескольких выборочных оценок ближайшей к действительности оценки, а не абсолютной меры. Обе оценки являются средними измерения разброса множества измерений от известного множества основных величин.

Отклонения между малыми числами, вероятно, будут малы. Чтобы показать, насколько они малы в абсолютных значениях, их надо разделить на среднее значение числа, от которого они получены. В нашем случае это будет , где n - число сравниваемых объектов. Одну из мер ошибки можно получить, если взять разности (или абсолютные разности) взвесить их приоритетами, взять их среднее, затем разделить на , т.е.

, где  - приоритеты, а - их оценки.

Среднеквадратичное  отклонение (СКО) двух наборов чисел и есть:

Медиана набора п чисел получается расположением чисел в возрастающем порядке и выбором члена, находящегося посередине, если п - нечетное, и среднего из двух серединных членов, если п - четное. Медианное абсолютное отклонение от медианы (МАО) набора чисел и дается выражением:

Медиана {|

  - медиана
|}

[2]

 

6. Основные понятия метода анализа иерархий

Cтруктуры

1) Узел – общее название для всех возможных решений (альтернатив), главной цели, всех факторов, от которых, так или иначе, зависит рейтинг. Название узла совпадает с названием соответствующего решения, критерия или фактора. Решения, критерий и факторы являются «узлами» проблемы принятия решения.

2) Уровень – группа всех однотипных (равноправных, однородных, гомогенных и т.п.) узлов. Название уровня отражает назначения, функцию группы узлов в ситуации принятия решения. Каждый узел определяется не только своим названием, но и названием уровня, которому он принадлежит. Отдельный уровень образуют альтернативные решения (узлы этого уровня однотипны в том смысле, что они являются решениями; прочие узлы таковыми не являются). Главный критерий, как правило, один – это отдельный уровень. На рейтинг оказывают влияние несколько групп факторов – это также уровни.

3) Вершина – узел, соответствующий главной цели отбора альтернатив.

4) Связь – указание на наличие влияния одного узла на другой. На схеме связь изображается стрелкой. Направление связи совпадает с направлением влияния.

5) Кластер – группа узлов одного уровня, подчиненных некоторому узлу другого уровня – вершине кластера (доминирующему узлу). Кластеры образуются при расстановке связей между узлами, т.е. при расстановке связей происходит формирование кластерной структуры. Важность узлов кластера друг относительно друга оценивается в соответствие с тем, какой узел является вершиной кластера. Кластер определяется: своей вершиной, названием уровня, списком узлов.

6) Система (структура модели, схема ситуации принятия решения) – совокупность всех узлов, сгруппированных по уровням, и всех связей между узлами. С математической точки зрения системы, которыми приходится оперировать в методе анализа иерархий, являются – направленными графами (сетями). Эта система является иерархической (но не является строгой иерархией). Название системы отражает ее назначение, принадлежность к сфере деятельности, в которой принимается решение.

7) Система с обратными связями. Система имеет обратные связи, если при любом способе нумерации уровней в системе есть узлы, доминирующие и над узлами уровней с большими номерами, и над узлами уровней с меньшими номерами.

8) Иерархия – система, в которой уровни расположены и пронумерованы так, что: нижний уровень содержит альтернативы, узлы уровней с большими номерами могут доминировать только над узлами уровней с меньшими номерами. Таким образом, в иерархии связи определяют пути одной направленности - от вершины к альтернативам через промежуточные уровни, которые состоят из узлов-факторов. Система представляет собой строгую иерархию, если допустимы связи только между соседними уровнями от верхнего уровня к нижнему.

Данные

1) Приоритет узла в кластере – положительное число, служащее для количественного выражения важности (веса, значимости, предпочтительности и т.п.) данного узла в кластере относительно остальных узлов кластера в соответствие с критерием, заключенным в вершине кластера.

2) Попaрные сравнения узлов кластера – оценки (качественные или количественные) отношения приоритета одного узла к приоритету другого. Цель парных сравнений – определение приоритетов узлов кластера. Для проведения парных сравнений задаются параметры: шкала сравнений и способ сравнений.

3) Шкала сравнений – упорядоченный набор градаций (терминов, чисел и т.п.) для выражения результатов парных сравнений. Шкала сравнений позволяет выражать оценки отношений значений приоритетов узлов, поэтому ее деления – безразмерные величины. Шкалы, использующиеся в методе анализа иерархий, являются шкалами отношений. Шкала является количественной, если результаты парных сравнений выражаются непосредственно с помощью чисел. Шкала является качественной, если результаты парных сравнений выражаются с помощью с градаций-предпочтений. Градациям качественных шкал, использующихся в методе анализа иерархий, соответствуют числа, т.е. качественные шкалы предоставляют возможность опосредованного оценивания приоритетов через предпочтения. Дискретная шкала имеет конечный набор градаций. Градациям непрерывной шкалы соответствуют числа на отрезке числовой прямой.

4) Способ сравнений определяется набором парных сравнений, необходимых для определения приоритетов узлов кластера. При сравнениях с эталоном (по Стивенсу) выбирается один из узлов кластера, с которым сравниваются все остальные. При проведении классических сравнений (по Саати) каждый узел кластера сравнивается со всеми остальными узлами кластера.

5) Сравнения кластеров - процедура оценки важности (приоритетности, силы подчинения) кластеров, имеющих общую вершину. Кластеры сравниваются друг с другом по критерию, заданному названием их вершины. Для проведения сравнений используется та же методика, что и для сравнений узлов в кластере.

6) Матрица сравнений – таблица числовых значений парных сравнений (для узлов кластера или для кластеров, имеющих общую вершину).

7) Индекс согласованности – количественная оценка противоречивости результатов сравнений (для системы в целом, для узлов одного кластера или для кластеров, имеющих общую вершину). Индекс согласованности не зависит от шкал сравнений, но зависит от количества парных сравнений. Индекс согласованности – положительное число. Чем меньше противоречий в сравнениях, тем меньше значение индекса согласованности.

8) Достоверность результата сравнения – количественная оценка, характеризующая степень неточности результата сравнения, связанная с компетентностью эксперта, уровнем доверия к данным и т.п. Достоверность сравнения выражается долей единицы (или в процентах). На основе значений достоверности сравнений для кластеров, имеющих общую вершину, и значений достоверности парных сравнений в кластерах определяется достоверность данных в масштабах всей системы.

9) Относительная согласованность матрицы сравнений – отношение индекса согласованности к среднестатистическому значению индекса согласованности при случайном выборе коэффициентов матрицы сравнений. Относительная согласованность для системы в целом характеризует взвешенное среднее значение относительной согласованности по всем матрицам сравнений. Данные можно считать достаточно согласованными, если значение относительной согласованности меньше чем 0,1

10) Идеальные сравнения – наиболее близкие к имеющим непротиворечивые результаты сравнений. Идеальным сравнениям соответствуют нулевой индекс согласованности и, соответственно, нулевое значение относительной согласованности.

11) Наиболее противоречивые сравнения – это результаты нескольких парных сравнений узлов одного кластера или кластеров, имеющих общую вершину, вносящие наибольший вклад в значение относительной согласованности.

Результаты

1) Итоговый вектор приоритетов – каждой альтернативе (каждому возможному решению) ставится в соответствие положительное число – приоритет. Приоритет количественно выражает важность (предпочтительность, вероятность, оптимальность и т.п.) альтернативы в соответствии с главным критерием. Сумма приоритетов всех альтернатив равна единице. Вследствие этого часто допустимо отождествление приоритетов с вероятностями.

2) Вектор приоритетов уровня - вектор приоритетов уровня вычисляется в предположении, что узлы данного уровня являются альтернативами. Все уровни, кроме тех, что содержат альтернативы и главный критерий, состоят из факторов, влияющих на итоговый вектор приоритетов. Таким образом, приоритеты узлов-факторов количественно характеризуют важность учета каждого фактора относительно других факторов того же уровня. При вычислении вектора приоритетов уровня рассматриваются только такие пути, образованные связями, которые ведут от вершины к узлам данного уровня.

3) Вектор приоритетов кластера – вектор приоритетов узлов кластера может задаваться напрямую (без проведения сравнений) или рассчитываться на основе матрицы сравнений.

4) Показатели согласованности и достоверности для системы в целом, характеризующие качество данных, использованных для вычисления векторов приоритетов, также являются результатами. Эти показатели позволяют оценить степень доверия к результатам, полученным с помощью метода анализа иерархий. Знание показателей согласованности позволяет решать промежуточную задачу выявления участков проблемы, по которым имеется наиболее противоречивая информация. Решение такой задачи позволяет сделать сбор и корректировку данных более целенаправленными.

5) Устойчивость вектора приоритетов – качественная характеристика чувствительности значений приоритетов к малым изменениям данных или структуры модели. Данные, использующиеся для принятия решений, всегда более или менее неточны. Поэтому чем меньше чувствительность значений приоритетов, тем больше обоснованность использования этих приоритетов для поддержки принятия решения.

6) Существенные элементы структуры – это узлы или связи между узлами, удаление которых приводит к существенному изменению рейтинга. Поиск существенных факторов является важной самостоятельной задачей в процессе подготовки принятия решения.

7) Приоритет узла в модели – соответствующая компонента вектора приоритетов уровня, которому принадлежит данный узел. Допустим, в решаемой задаче близость приоритета к единице (к нулю) ассоциируется с предпочтительностью оптимальностью и т.п., тогда, как правило, узлы с малыми (с большими) приоритетами оказываются несущественными [1].

 

 7. Применение метода анализа иерархий в психотерапии

 

Метод анализа иерархий может быть использован для проникновения в сущность   психологических проблем следующим образом.    Рассмотрим общее благополучие  индивидуума в качестве единственного элемента высшего уровня иерархии.  По-видимому, на этот уровень в основном влияют детские, юношеские и взрослые впечатления.   Факторы развития  и зрелости, отражающиеся в благополучии, могут включать как влияние отца и матери в отдельности,  так и их совместное влияние как родителей, социоэкономический  фон,   отношение с братьями и сестрами, группу ровесников, школьное обучение, религиозный статус и т.д.

На перечисленные выше факторы, которые составляют второй уровень иерархии, влияют соответствующие критерии. Например, влияние отца может быть разбито на категории, включающие его темперамент, строгость, заботу и привязанность. Отношения с братьями и сестрами можно далее характеризовать их количеством, разницей в возрасте и полом; моделирование воздействия и роли ровесников обеспечивает более ясную картину влияния друзей, обучения в школе и учителей.

В качестве альтернативной основы описания для второго уровня можно включить чувство собственного достоинства, уверенность в будущем, адаптируемость к новым людям и новым обстоятельствам и т.д., влияющих или находящихся под влиянием расположенных выше элементов.

Более полная основа психологической  предыстории может включать несколько сотен элементов на каждом уровне, выбранных экспертами и, расположенных таким образом, чтобы получить максимальное понимание рассматриваемого индивидуума.

Информация о работе Метод анализа иерархий