Автор работы: Пользователь скрыл имя, 08 Июня 2013 в 18:36, курсовая работа
Электронные спектры молекул являются весьма сложными.
Зависимость между строением вещества и его электронным спектром продолжает оставаться предметом изучения многих исследователей.
Именно поэтому анализ качества лекарственных препаратов с помощью спектрофотометрии является весьма актуальной проблемой.
Цель данной работы - осветить вопросы идентификации, методик анализа и количественного определения препаратов с помощью спектрофотометрии .
В экспериментальной части работы проведен анализ таблеток метронидазола 0,25г, методом спектрофотометрии.
1. Введение
2. Глава 1. Оптические методы анализа
2.1. Понятие оптических методов анализа
2.2. Классификация оптических методов
2.3. Некоторые элементы теории поглощения света
3. Глава 2. Спектрофотометрия в ультрафиолетовой и видимой областях
3.1. Электронные спектры
3.2. Спектрофотометры
3.3. Методика спектрофотометрических измерений
3.4. Кривые поглощения
3.5. Калибровка спектрофотометров
3.6. Отклонение от закона Ламберта - Бера
4. Глава 3. Инфракрасная спектрофотометрия
4.1. Основа метода
4.2. Инфракрасные спектрофотометры
4.3. Методика измерений
5. Глава 4. Применение спектрофотометрии в фармакопейном анализе
5.1. Испытание на подлинность органических лекарственных веществ спектометрией в ультрафиолетовом спектре
5.2. Испытание на чистоту спектометрией в ультрафиолетовом спектре
5.3. Количественное определение спектометрией в ультрафиолетовом спектре
5.4. Инфракрасные спектры поглощения и их применение для идентификации лекарственных веществ
5.5. Количественное определение по поглощению в инфракрасной области
6. Экспериментальная часть
7. Выводы
8. Список использованной литературы
Когда свет проходит через вещество, интенсивность излучения уменьшается по сравнению с интенсивностью излучения, падающего на вещество.
Закон Бугера-Ламберта связывает поглощение с толщиной слоя поглощающего вещества и выражается соотношением:
(I0 / I) = k1 * b,
где I0 - интенсивность излучения, падающего на вещество; - интенсивность излучения, прошедшего через вещество;
b - толщина слоя вещества в сантиметрах;
k1 - показатель поглощения - величина, обратная той толщине слоя, проходя через который поток излучения ослабляется в 10 раз.
Второй закон поглощения Бера связывает интенсивность падающего света и света, прошедшего через раствор определенной толщины, с концентрацией раствора. При этом предполагается, что растворитель не поглощает в данной области спектра:
(I0 / I) = k2 * С,
где k2 - константа, зависящая от способа выражения концентрации раствора;
С - концентрация раствора.
Оба закона могут быть сведены в одно уравнение, которое известно под названием закона Бугера - Ламберта - Бера, закона Ламберта - Бера или просто закона Бера:
(I0 / I) = k * b * С,
Раздел терминологии, относящейся к оптическим методам анализа, остается унифицированным, описывается согласно Государственной фармакопеи X издания с некоторыми изменениями согласно Второму изданию Международной фармакопеи.
Соотношение lg (I0 / I) известно как поглощение (А), оптическая плотность (D), или как экстинкция (Е).
Значение k зависит от единиц, в которых выражают концентрацию вещества и толщину слоя. Если выразить С в грамм-молях на 1 л раствора, а b в сантиметрах, то коэффициент поглощения будет равен молярному коэффициенту поглощения. Последний изображается греческой буквой эпсилон.
Если концентрация выражается в граммах вещества на 100 мл раствора, то эта величина называется удельным показателем поглощения и обозначается символом или Е (1 %, 1 см).
Известно также выражение поглощения при концентрации в граммах вещества на 1 л раствора - поглощаемость - а. Эта величина в 10 раз меньше, чем удельный показатель поглощения.
3. Глава 2. Спектрофотометрия в ультрафиолетовой и видимой областях
3.1 Электронные спектры
Ультрафиолетовый спектр включает область длин волн от 200 до 380 нм, видимая часть спектра находится в пределах от 380 до 780 нм.
Электронные спектры молекул являются весьма сложными. Возникающие полосы поглощения являются результатом взаимодействий различных видов энергий, сопровождающих электронные изменения. Ультрафиолетовые спектры многоатомных молекул даже в газовой фазе состоят из широких полос поглощения или перекрывающихся полос, так как наблюдается большое количество близко расположенных подуровней. При переходе из основного состояния в возбужденное перемещение электронов в ультрафиолетовой области является наиболее вероятным и значительным по величине. Изменение других видов энергии, связанное с различными количествами колебательной энергии, также возможно, но проявляется менее заметно. Изменения энергии вращения также сопровождают электронные изменения, но они имеют еще меньшую величину и обусловливают тонкую структуру, налагаемую на электронно-колебательное изменение.
В случае спектров жидких веществ и растворов вращательная и вращательно-колебательная структуры могут отсутствовать вследствие взаимодействия между соседними молекулами растворенного вещества и влияния растворителя. Большинство химических исследований относится именно к этим условиям.
Зависимость между строением вещества и его электронным спектром продолжает оставаться предметом изучения многих исследователей.
3.2 Спектрофотометры
Измерение поглощения в ультрафиолетовой и видимой областях производится на фотоэлектрических спектрофотометрах. В Советском Союзе выпускались однолучевые, призменные, нерегистрирующие приборы СФ-4 и СФ-4А для измерений в ультрафиолетовой, видимой и ближней инфракрасной областях спектра (от 220 до 1100 нм), нерегистрирующий прибор с дифракционной решеткой СФД-2 для измерений от 220 до 1100 нм, однолучевой, призмепной, нерегистрирующей спектрофотометр СФ-5М для измерений от 380 до 1100 нм, и двухлучевые, призменные, регистрирующие приборы СФ-2М и СФ-10 для измерений в видимой части спектра от 400 до 750 нм.
За рубежом и в современной Украине используются также нерегистрирующие и регистрирующие спектрофотометры типа Бекман (США), Перкин-Элмер (США), Уникам (Англия), Хилгер-Увиспек (Англия), Цейс (ГДР) и другие серийные приборы. Основными частями любого спектрофотометра являются источник непрерывного излучения, монохроматор, кювета для анализируемого раствора, детектор и регистрирующее устройство.
Оптическая схема простейшего спектрофотометра приведена на рисунке
В качестве источников излучения в приборах наиболее широко используются газоразрядная водородная лампа и вольфрамовая лампа накаливания.
Газоразрядная водородная лампа обеспечивает сплошной спектр в ультрафиолетовой области и особенно удобна для измерений от 200 до 350 нм.
Вольфрамовая лампа накаливания используется для работы в ближней ультрафиолетовой области, видимой и ближней инфракрасной области, т. е. в пределах от 320 до 3000 нм. Ртутные лампы обеспечивают очень высокую интенсивность в ультрафиолетовой и видимой областях, давая интенсивную линию спектра ртути и сплошное излучение. Ртутные лампы необходимо нагревать в течение 15 минут, прежде чем они начнут давать постоянное излучение.
Недостатком является высокая температура, которую ртутная лампа приобретает при работе.
Ксеноновые разрядные лампы применяются в ряде приборов для измерений в области от 200 до 900 нм.
Монохроматор - приспособление для изолирования очень узкой полосы излучения; из источника света. Смешанное излучение проходит через щель в монохроматор, в котором луч разделяется на спектр при помощи призмы или дифракционной решетки. Этот спектр фокусируется на выход щели. Путем вращения призмы или дифракционной решетки можно выделить определенную часть спектра, которая через щель направляется в кюветное отделение, где находится раствор исследуемого вещества.
Угол отклонения между первоначальным направлением луча и направлением, в котором он проходит через призму, зависит от показателя преломления материала, из которого сделана призма. Показатель преломления любого материала изменяется в зависимости от длины волны, что определяется следующим уравнением:
= n0 + C / (длина волны - длина волны 0),
где n - показатель преломления при определенной длине волны;
C; n0; - константы.
Следовательно, когда луч немонохроматической радиации входит в призму, составляющие его длины волн отклоняются под разными углами. Тот же процесс повторяется при выходе луча из призмы. Таким образом, получается спектр, в котором короткие волны отклоняются от их начального направления больше, чем длинные.
Угловая дисперсия - это изменение угла диспергированного луча с изменением длины волны. Дисперсия не изменяется линейно в зависимости от длины волны.
Разрешающая сила призмы определяется способностью инструмента разделять две спектральные линии, отличающиеся на длину волны .
Материал, из которого изготавливаются призмы, выбирается с расчетом получения максимальной дисперсии и хорошей пропускаемости в определенной области спектра. Призмы из стекла используются в видимой области, из кварца - в ультрафиолетовой и ближней инфракрасной области. Призмы по сравнению с дифракционными решетками обеспечивают более чистый спектр.
Дифракционные решетки дешевле, чем призмы, и могут быть использованы для всех областей спектра, так как пропускаемость в данном случае не имеет определяющего значения. Дифракционная решетка состоит из большого числа параллельных линий, нанесенных на стекло или на поверхность металла. Спектры, получаемые с дифракционной решеткой, не так чисты, как призменные, потому, что образуется спектр более чем одного «порядка».
Когда свет отражается от дифракционной поверхности, спектры образуются на обеих сторонах перпендикуляра в соответствии со следующим уравнением:
* длина волны = d * (sin i + sin угол дифракции ),
где n - порядок спектра;
d - расстояние между
линиями дифракционной решетки;
i - угол падения;
Дисперсия от дифракции остается практически постоянной при изменении длины волны, и разрешающая сила решетки определяется порядком спектра и числом линий на освещенной части дифракционной решетки.
Разрешающая сила также зависит от качества дифракционной решетки. Любые недостатки в точности нанесения линий могут привести к появлению несколько смещенного изображения линий. Обычно получают спектр несколько более высокого порядка, чем ожидаемый.
Для обеих систем диспергирования света необходимы коллимирующие и фокусирующие линзы или зеркала, обычно комбинируемые с диспергирующим устройством.
В абсорбционной спектроскопии применяются кюветы разных размеров, изготовленные из кварца или стекла. Как и призмы, кюветы сделаны из материала, обладающего высокой пропускной способностью в определенной части спектра. Кварцевые кюветы пригодны для измерений как ультрафиолетовой, так и в видимой области; стеклянные же могут быть использованы только в видимой области.
Толщина слоя в кюветах колеблется от 0,1 до 10 см. Чаще всего измерения проводят в кюветах с толщиной слоя 1 см. Трудно производить кюветы, абсолютно идентичные по пропускаемости, поэтому одну и ту же кювету обычно используют только для растворителя. Поправка на различное поглощение кювет определяется путем сравнения поглощения обеих кювет, наполненных чистым растворителем.
Следует обращать внимание на чистоту кювет и состояние их оптической поверхности, так как оба этих фактора влияют на показания поглощения.
Для измерения поглощения света необходимо фотометрическое устройство. Применяемые для этих целей фотоэлементы, фотоэмиссионные лампы и фотоумножители основаны на известном эффекте перехода световой энергии в электрическую.
Фотоэлементы дают относительно сильный ток, который может быть измерен при помощи гальванометра. Фотоэлементы чаще всего применяются в фотоэлектроколориметрах.
Фотоэмиссионные лампы - это разреженные трубки, содержащие два электрода, один из которых при облучении испускает электроны, так как покрыт светочувствительным материалом (щелочной металл, нанесенный на слой окиси серебра или сурьмы). Возникающий при этом ток очень слабый, поэтому необходимо применять усилительные устройства.
Эмиссионные лампы применяют по следующим основным причинам. Вследствие низкого внутреннего сопротивления усиление тока в фотоэлементе затруднено. В спектрофотометре используется более узкий луч света, чем в колориметре, благодаря чему ток в фотоэлементе был бы слишком слаб для измерения. Ток фотоэлемента, подвергаемого постоянному освещению, медленно снижается во времени. Наконец, спектральный ответ фотоэлементов ограничивается видимой частью спектра, фотоэлементы почти бесполезны в ультрафиолетовой области.
Природа покрытия определяет область волн, в которой эмиссионная лампа может быть использована (от 300 до 500 нм для слоя металлического натрия и от 200 до 700 нм для слоя калия).
Фотоумножительные устройства являются дальнейшим развитием фотоэмиссионных ламп. Первичные электроны, испускаемые фоточувствительным электродом, направляются на следующий электрод, который в свою очередь испускает несколько электронов на каждый падающий на него электрон и т. д. После ряда таких этапов удается значительно усилить ток при сохранении очень небольшой величины начального тока.
3.3 Методика спектрофотометрических измерений
Существует два типа спектрофотометров: однолучевые и двухлучевые.
В однолучевом приборе луч света, выходящий из монохроматора, проходит через одну кювету и затем попадает в детектор. Определение поглощения производят следующим образом. Вначале прибор устанавливают на нуль пропускаемости (бесконечная величина поглощения) с детектором в темноте, что делается для компенсации слабого тока, который имеется даже при отсутствии излучения и возникает вследствие эмиссии тепловых электронов. Затем в луч помещают кювету, содержащую растворитель, и прибор устанавливается для измерения в единицах пропускаемости (нуль поглощения) при определенной длине волны. Наконец, кювету с растворителем заменяют кюветой с раствором исследуемого вещества и производят измерение.
По этой методике измеряют два фототока - один пропорциональный интенсивности луча, прошедшего через растворитель, и второй - пропорциональный интенсивности луча, прошедшего через раствор вещества. Чтобы соотношения этих токов были эквивалентны пропускаемости, надо источник излучения и детектор оставлять постоянными в пределах, когда пропускаемость установлена на единицу и когда пропускаемость уменьшается при измерении поглощения вещества. Следовательно, особое внимание необходимо обращать на постоянное напряжение, подающееся на лампу.
В двухлучевом спектрофотометре эта проблема разрешена следующим образом. Излучение, выходящее из монохроматора, разделяется на два луча, имеющие одинаковые интенсивности и спектральные распределения. Один из лучей проходит через кювету с растворителем, другой - через кювету с исследуемым веществом. На отношение излучений, выходящих из обеих кювет, величина источника света не оказывает никакого влияния. Отношение излучений может быть измерено двумя способами.
Лучи, вышедшие из кювет, направляются на катоды двух фотоэмиссионных ламп или фотоумножителей. Выходы этих детекторов связаны серией сопротивлений, усиливают разницу между двумя фототоками и регистрируют величину поглощения. Удобством двухлучевых приборов является возможность регистрации показаний.
В приборах с одним детектором лучи, выходящие из двух кювет, направляются на ту же часть катода одной лампы. При помощи вращающегося непрозрачного диска лучи разбиваются на отдельные порции. Таким образом, на детектор падает излучение, интенсивность которого меняется в пределах I и I0, и его выход меняется с той же скоростью, что и скорость вращения диска. Это создает напряжение, амплитуда которого будет пропорциональна разнице в интенсивности двух лучей. Дальнейшее измерение напряжения, соответствующего интенсивности лучей, зависит от конструкции прибора.