Разделение изотопов и применение их в ядерном реакторе

Автор работы: Пользователь скрыл имя, 26 Февраля 2013 в 14:33, реферат

Краткое описание

Цель исследования – выявить отличительные особенности текстов научно-технической направленности в свете задач, выполняемых ими как средством языковой коммуникации в области науки, и изучить влияние этих особенностей на практику перевода текстов в области оценки соответствия.
Цель исследования определила следующие задачи:
- Выделить особенности научного стиля английского языка по сравнению с русским языком;
- Исследовать терминологию в области оценки соответствия, принятую в авторитетных международных сообществах;
- Выделить основные трудности перевода терминологии научно-технических текстов и наметить пути их решения.
Материалом исследования послужили англоязычные стандарты в области разделения изотопов и применения их в ядерном реакторе.

Содержание

1.Введение……………………………………………………………………...…3
2.Abstract………………………………………………………………………….5
3. Статьи «Isotope» ….…………………………………………………………..7
- «Isotope separation» ………………………………………………………….16
- «Nuclear reactor» …………………………………………………………….24
4. Перевод статей ………………………………………………………………43
5.Анализ перевода..…………………………………………………………….83
6. Словарь терминов и аббревиатур…………………………………………87
7. Список использованной литературы……………………………………..91
8.Приложения: технические статьи на английском языке (450тыс. знаков) ………………………………………………………………..................94

Вложенные файлы: 1 файл

диплом полный вариант 2.doc

— 1.57 Мб (Скачать файл)

Министерство образования  РФ

Российский Химико-Технологический  Университет им. Д. И .Менделеева

 

 

 

 

Центр Лингвистического образования

 

 

 

 

 

 

 

 

 

 

Дипломная аттестационная работа

по переводу

на тему: «Разделение  изотопов и применение их в ядерном  реакторе»

 

по специальности:

«Технологии изотопов и  Водородной энергетики»

 

 

 

 

 

 

 

 

Директор Центра                                                        д.п.н., профессор Кузнецова Т.И.

 

Ведущий преподаватель                                            Черкасова  Л.П.

 

Студент                                                                          Мошняга А.В.

                                                                                           ( гр. Ф-42)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Москва 2011 г.

 

 

Оглавление

1.Введение……………………………………………………………………...…3

2.Abstract………………………………………………………………………….5

3. Статьи «Isotope» ….…………………………………………………………..7

- «Isotope separation» ………………………………………………………….16

- «Nuclear reactor» …………………………………………………………….24

4. Перевод статей ………………………………………………………………43

5.Анализ перевода..…………………………………………………………….83

6. Словарь терминов и аббревиатур…………………………………………87

7. Список использованной литературы……………………………………..91

8.Приложения: технические статьи на английском языке (450тыс. знаков) ………………………………………………………………..................94

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Настоящая дипломная  работа посвящена переводу текстов  по теме, исследованию лексических, грамматических и стилистических особенностей текстов  и анализ перевода научно-технической  направленности по теме «Разделение изотопов и применение их в ядерном реакторе»

Перевод научно-технической  литературы – сложнейшая часть переводческой  деятельности, добиться правильности, исполнения которой возможно лишь сочетанием таких факторов, как грамотность  и адекватность переводимого текста и техническая компетентность переводчика, которая включает и высокую квалификацию в конкретной предметной области, и хорошее владение иностранным языком, и умение грамотно излагать свои мысли на языке перевода, не уходя от сути и стиля оригинала.

Грамотный научно-технический  перевод востребован во всех областях знаний человека. Способы получения  именно грамотных научно-технических  переводных трудов в последнее время  приобретают все большую ценность, становятся все более актуальными. Именно поэтому автором данной работы в качестве темы для исследования выбрана тема научно-технического перевода.

Объектом исследования данной работы являются научно-технические тексты по теме «Разделение изотопов и применение их в ядерном реакторе», представляющие интерес в плане выявления лексико-стилистических особенностей перевода научно-технических текстов.

Предмет исследования в данной работе становятся терминология и лексика, принятая в технической литературе, посвященной тематике изотопов.

Актуальность работы обусловлена повышением значимости перевода научно-технической литературы как способа обмена и  распространения информации в мировом научном сообществе.

Цель исследования – выявить отличительные особенности текстов научно-технической направленности в свете задач, выполняемых ими как средством языковой коммуникации в области науки, и изучить влияние этих особенностей на практику перевода текстов в области оценки соответствия.

Цель исследования определила следующие задачи:

- Выделить особенности  научного стиля английского языка по сравнению с русским языком;

- Исследовать терминологию  в области оценки соответствия, принятую в авторитетных международных  сообществах;

- Выделить основные  трудности перевода терминологии  научно-технических текстов и  наметить пути их решения.

Материалом  исследования послужили англоязычные стандарты в области разделения изотопов и применения их в ядерном реакторе.

Теоретическая база исследования приведена в списке литературы и основана на трудах ведущих учёных - лингвистов в области языкознания и теории перевода.

Структура работы включает в себя теоретическую часть, практическую часть и приложения. В свою очередь, теоретическая часть включает введение, три главы, которые рассматривают описание перевода как вида языковой деятельности, классификацию перевода, основные особенности научно-технических текстов и способов их перевода, а также некоторые трудности, с которыми сталкиваются переводчики при переводе текстов научно-технической направленности.

Практическая  часть представляет собой перевод англоязычных стандартов по теме «Isotope separation and nuclear reactor»

В конце работы представлены заключения по результатам работы, библиография и приложения.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аннотация (Abstract)

This diploma includes a translation of scientific and technical texts and an analysis of the translation. It researches lexical, grammatical and stylistic features of the texts. This work is devoted to the topic of isotopes and the problem of their separation.

The term isotope was coined in 1914 by Margaret Todd, a Scottish physician, during a conversation with Frederick Soddy (to whom she was distantly related by marriage). Soddy, a chemist at Glasgow University, explained that it appeared from his investigations as if each position in the periodic table was occupied by multiple entities. Hence Todd made the suggestion, which Soddy adopted, that a suitable name for such an entity would be the Greek term for "at the same place".

Isotopes are atoms that contain the same number of protons but a different number of neutrons. The number of protons (the atomic number) is the same for each isotope, e.g. carbon-12, carbon-13 and carbon-14 each have 6 protons, but the number of neutrons in each isotope differs.

A nuclide is an atom with a specific number of protons and neutrons in the nucleus, for example carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, while the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear. The neutron number has drastic effects on nuclear properties, but its effect on chemical properties is negligible in most elements, and still quite small in the case of the very lightest elements, where it does matter slightly. Since isotope is the older term, it is better known, and is still sometimes used in contexts where nuclide might be more appropriate, such as nuclear technology and nuclear medicine.

Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes, for example separating natural uranium into enriched uranium and depleted uranium. This is a crucial process in the manufacture of uranium fuel for nuclear power stations, and is also required for the creation of uranium based nuclear weapons. Plutonium based weapons use plutonium produced in a nuclear reactor, which must be operated in such a way as to produce plutonium already of suitable isotopic mix or grade. This theory was first recognized by Charles H. Townes. While in general chemical elements can be purified through chemical processes, isotopes of the same element have a nearly identical chemical property, which makes this type of separation impractical, except for separation of deuterium.

The concept of a nuclear chain reaction was first realized by Hungarian scientist Leo Szilard in 1933. He filed a patent for his idea of a simple nuclear reactor the following year.

The first artificial nuclear reactor, Chicago Pile-1, was constructed at the University of Chicago by a team led by Enrico Fermi in 1942. It achieved criticality on December 2, 1942 at 3:25 PM. The reactor support structure was made of wood, which supported a pile of graphite blocks, embedded in which was natural Uranium-oxide 'pseudospheres' or 'briquettes'. Inspiration for such a reactor was provided by the discovery by Lise Meitner, Fritz Strassman and Otto Hahn in 1938 that bombardment of Uranium with neutrons (provided by an Alpha-on-Beryllium fusion reaction, a "neutron howitzer") produced a Barium residue, which they reasoned, was created by the fissioning of the Uranium nuclei. Subsequent studies revealed that several neutrons were also released during the fissioning, making available the opportunity for a chain reaction.

 

A nuclear reactor is a device to initiate and control a sustained nuclear chain reaction. The most common use of nuclear reactors is for the generation of electrical power and for the power in some ships. Heat from nuclear fission is used to raise steam, which runs through turbines, which in turn powers either ship's propulsion or electrical generators. Soon after the Chicago Pile, the U.S. military developed nuclear reactors for the Manhattan Project starting in 1943. The primary purpose for these reactors was the mass production of plutonium (primarily at the Hanford Site) for nuclear weapons. Today a lot of design of nuclear reactors, operating the different purposes and it will be presented in my diploma.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isotope

Isotopes are atoms that contain the same number of protons but a different number of neutrons. The number of protons (the atomic number) is the same for each isotope, e.g. carbon-12, carbon-13 and carbon-14 each have 6 protons, but the number of neutrons in each isotope differs. This alters the total number of nucleons (protons and neutrons) in the nucleus, known as the mass number, as well as the atomic mass. For example, carbon-12, carbon-13 and carbon-14 are three isotopes of the element carbon with mass numbers 12, 13 and 14 respectively. The atomic number of carbon is 6 (every carbon atom has 6 protons); therefore the neutron number in these isotopes are 6, 7 and 8 neutrons respectively.

 

A nuclide is an atom with a specific number of protons and neutrons in the nucleus, for example carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, while the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear. The neutron number has drastic effects on nuclear properties, but its effect on chemical properties is negligible in most elements, and still quite small in the case of the very lightest elements, where it does matter slightly. Since isotope is the older term, it is better known, and is still sometimes used in contexts where nuclide might be more appropriate, such as nuclear technology and nuclear medicine.

 

An isotope and/or nuclide is specified by the name of the particular element (this indicates the atomic number implicitly) followed by a hyphen and the mass number (e.g. helium-3, carbon-12, carbon-13, iodine-131 and uranium-238). When a chemical symbol is used, e.g., "C" for carbon, standard notation is to indicate the number of nucleons with a superscript at the upper left of the chemical symbol and to indicate the atomic number with a subscript at the lower left (e.g.  23Не,  24Не, 612С, 614С, 23592 U and 239 92U).

Since the atomic number is implied by the element symbol, it is common to state

only the mass number in the superscript and leave out the atomic number subscript.

 

Some isotopes are radioactive and are therefore described as radioisotopes or radionuclides, while others have never been observed to undergo radioactive decay and are described as stable isotopes. For example, 14С is a radioactive form of carbon while 12С and 13С are stable isotopes. There are about 339 naturally occurring nuclides on Earth, of which 288 are primordial nuclides, meaning that they have existed since the solar system's formation. These include 33 nuclides with very long half lives (over 80 million years) and 255 which are formally considered as "stable isotopes", since they have not been observed to decay.

 

Many apparently "stable" isotopes are predicted by theory to be radioactive, with extremely long half-lives (this does not count the posibility of proton decay, which would make all nuclides unstable). Of the 255 nuclides never observed to decay, only 90 of these (all from the first 40 elements) are stable in theory to all known forms of decay. Element 41 (niobium) is theoretically unstable to spontaneous fission, but this has never been detected. Many other stable nuclides are in theory energetically susceptible to other known forms of decay such as alpha decay or double beta decay, but no decay has yet been observed. The half lives for these processes often exceed a million times the estimated age of the universe, and in fact there are 27 known radionuclides (see primordial nuclide) with half lives longer than the age of the universe.

 

Adding in the radioactive nuclides that have been created artificially, there are more than 3100 currently known nuclides. These include 905 nuclides which are either stable, or have half lives longer than 60 minutes.

 

 

 

 

Contents

1 History of the term

2 Variation in properties between isotopes

2.1 Chemical and molecular properties

2.2 Nuclear properties and stability

2.3 Numbers of isotopes per element

2.4 Even and odd nucleon numbers

2.4.1 Even mass number

2.4.1.1 Even proton-even neutron

2.4.1.2 Odd proton-odd neutron

2.4.2 Odd mass number

2.4.2.1 Odd proton-even neutron

2.4.2.2 Even proton-odd neutron

2.4.3 Odd neutron number

3 Occurrence in nature

4 Atomic mass of isotopes

5 Applications of isotopes

5.1 Use of chemical and biological properties

5.2 Use of nuclear properties

6 References

 

 

 

 

 

 

 

 

 

 

 

History of the term

The term isotope was coined in 1914 by Margaret Todd, a Scottish physician, during a conversation with Frederick Soddy (to whom she was distantly related by marriage). Soddy, a chemist at Glasgow University, explained that it appeared from his investigations as if each position in the periodic table was occupied by multiple entities. Hence Todd made the suggestion, which Soddy adopted, that a suitable name for such an entity would be the Greek term for "at the same place".

Soddy's own studies were of radioactive (unstable) atoms. The first observation of different stable isotopes for an element was by J. J. Thomson in 1913. As part of his exploration into the composition of canal rays, Thomson channeled streams of neon ions through a magnetic and an electric field and measured their deflection by placing a photographic plate in their path. Each stream created a glowing patch on the plate at the point it struck. Thomson observed two separate patches of light on the photographic plate (see image), which suggested two different parabolas of deflection. Thomson eventually concluded that some of the atoms in the neon gas were of higher mass than the rest. F.W. Aston subsequently discovered different stable isotopes for numerous elements using a mass spectrograph.

 

Variation in properties between isotopes.

 

Chemical and molecular properties

A neutral atom has the same number of electrons as protons. Thus, different isotopes of a given element all have the same number of protons and electrons and share a similar electronic structure. Because the chemical behavior of an atom is largely determined by its electronic structure, different isotopes exhibit nearly identical chemical behavior. The main exception to this is the kinetic isotope effect: due to their larger masses, heavier isotopes tend to react somewhat more slowly than lighter isotopes of the same element. This is most pronounced for protium (1H) and deuterium (2H), because deuterium has twice the mass of protium. The mass effect between deuterium and the relatively light protium also affects the behavior of their respective chemical bonds, by means of changing the center of gravity (reduced mass) of the atomic systems. However, for heavier elements, which have more neutrons than lighter elements, the ratio of the nuclear mass to the collective electronic mass is far greater, and the relative mass difference between isotopes is much less. For these two reasons, the mass-difference effects on chemistry are usually negligible.

In similar manner, two molecules that differ only in the isotopic nature of their atoms (isotopologues) will have identical electronic structure and therefore almost indistinguishable physical and chemical properties (again with deuterium providing the primary exception to this rule). The vibrational modes of a molecule are determined by its shape and by the masses of its constituent atoms. As a consequence, isotopologues will have different sets of vibrational modes. Since vibrational modes allow a molecule to absorb photons of corresponding energies, isotopologues have different optical properties in the infrared range.

 

Nuclear properties and stability

Atomic nuclei consist of protons and neutrons bound together by the residual strong force. Because protons are positively charged, they repel each other. Neutrons, which are electrically neutral, stabilize the nucleus in two ways. Their co presence pushes protons slightly apart, reducing the electrostatic repulsion between the protons, and they exert the attractive nuclear force on each other and on protons. For this reason, one or more neutrons are necessary for two or more protons to be bound into a nucleus. As the number of protons increases, so does the ratio of neutrons to protons necessary to ensure a stable nucleus. For example, although the neutron: proton ratio of   3 2Не   is 1:2, the neutron: proton ratio of 238 92U   is greater than 3:2. A number of lighter elements have stable nuclides with the ratio 1:1 (Z = N). The nuclide 40 20Са (calcium-40) is the heaviest stable nuclide with the same number of neutrons and protons; all heavier stable nuclides contain more neutrons than protons.

 

Numbers of isotopes per element

Of the 80 elements with a stable isotope, the largest number of stable isotopes observed for any element is ten (for the element tin). Xenon is the only element that has nine stable isotopes. No element has eight stable isotopes. Four elements have seven stable isotopes, nine have six stable isotopes, nine have five stable isotopes, nine have four stable isotopes, five have three stable isotopes, 16 have two stable isotopes (counting 180m 73Ta  as stable), and 26 elements have only a single stable isotope (of these, 19 are so-called mononuclidic elements, having a single primordial stable isotope that dominates and fixes the atomic weight of the natural element to high precision; 3 radioactive mononuclidic elements occur as well). In total, there are 255 nuclides that have not been observed to decay. For the 80 elements that have one or more stable isotopes, the average number of stable isotopes is 255/80 = 3.2 isotopes per element.

Информация о работе Разделение изотопов и применение их в ядерном реакторе