Развитие познавательного интереса к математике, как одно из условий формирования познавательных процессов старших дошкольников

Автор работы: Пользователь скрыл имя, 29 Апреля 2014 в 19:57, курсовая работа

Краткое описание

Третье тысячелетие, согласно прогнозам ученых, ознаменовано информационной революцией, когда знающие и образовательные люди станут цениться как истинное национальное богатство. Необходимость ориентироваться в возрастающем объеме знании предъявляет определенные требования к умственному воспитанию подрастающего поколения. Так, современная образовательная система на передний план выдвигает задачу формирования у подрастающего поколения способности к активной умственной деятельности.
Умственное развитие дошкольника - важнейшая составная часть его общего психического развития, подготовки к школе и ко всей будущей жизни. Но и само умственное развитие - сложный процесс - это формирование познавательных интересов, накопление разнообразных знаний и умений, овладение речью.

Содержание

Введение..........................................................................................стр.2
Глава I. Теоретические основы проблемы математического развития детей на современном этапе…………….………………………...........стр.6
1.1.Анализ психолого-педагогической литературы по вопросам математического развития детей дошкольного возраста………....стр.6
1.2. Традиционные и нетрадиционные формы и методы обучения детей математике ………………………………………………………….….стр.11
1.3. Педагогические условия развития познавательного интереса к математике детей старшего дошкольного возраста………………………………………….…………....................стр.15
Выводы по I главе .…………………………………………………….... стр.21
Глава II. Проект работы по математическому развитию детей старшего дошкольного возраста…………………………………………...............стр.22
2.1.Изучение опыта работы воспитателей МБДОУ по математическому развитию детей старшего дошкольного возраста………………………стр. 22
2.2. Использование традиционных и нетрадиционных форм обучения в процессе математического развития детей старшего дошкольного возраста………………………………………………………..................стр.26
Выводы по II главе…………………….………………….………………стр.30
Заключение………………………………………………………………. стр.31
Список литературы……………………………………………………..стр.32

Вложенные файлы: 1 файл

развитие познавательного интереса к математике, как одно из условий формирования познавательных процессов старших дошкольников.docx

— 114.60 Кб (Скачать файл)

В настоящее время исследуются возможности использования наглядного моделирования в процессе обучения решению арифметических задач (Н.И. Непомнящая), познания детьми количественных и функциональных зависимостей (Л. Н Бондаренко, Р. Л. Непомнящая, А. И. Кириллова), способности дошкольников к наглядному моделированию при ознакомлении с пространственными отношениями (Р.И. Говорова, О. М. Дьяченко, Т. В. Лаврентьева, Л. М. Хализева).

В условиях развития вариативности и разнообразия дошкольного образования в последнее десятилетие происходит внедрение в практику работы дошкольных образовательных учреждений альтернативных образовательных технологий, реализующих различные подходы к вопросам образования и развития ребенка дошкольного возраста.

В этой связи, с теоретической и практической точек зрения все более актуализируется проблема разработки концептуальных подходов к построению системы непрерывного преемственного математического образования дошкольников, определения целей и оптимальных границ образовательного содержания дошкольных программ.

Понятие «математическое развитие» дошкольников трактуется в основном как формирование и накопление математических знаний и умений. Следует отметить, что основа такой трактовки понятия «математическое развитие» дошкольников была заложена еще в работах Л.А. Венгера и др.( 7, с 48 )

Такое понимание математического развития устойчиво сохраняется в работах специалистов дошкольного образования. Например, в исследованиях В.В. Абашиной понятию математического развития ребенка дошкольного возраста посвящена целая глава. В этой работе дается определение понятию «математическое развитие»: «математическое развитие дошкольника - это процесс качественного изменения в интеллектуальной сфере личности, который происходит в результате формирования у ребенка математических представлений и понятий». (2, с.56)

Таким образом, математическое развитие рассматривается как следствие обучения математическим знаниям. В какой-то мере это, безусловно, наблюдается в некоторых случаях, но происходит далеко не всегда. Если бы данный подход к математическому развитию ребенка был верным, то достаточно было бы отобрать круг знаний, сообщаемых ребенку, и подобрать «под них» соответствующий метод обучения, чтобы сделать этот процесс реально продуктивным, т.е. получать в результате «поголовное» высокое математическое развитие у всех детей. (2, с.56)

В настоящее время прослеживаются два подхода к определению содержания обучения. Ряд авторов (Г.А. Корнеева, Э.Ф. Николаева, Е.В. Родина) эффективность математического развития детей связывают с расширением информационной насыщенности занятий. Другие же (П.Я. Гальперин, А.Н. Федорова) стоят на позиции обогащения содержания, направленного на развитие интеллектуальных способностей и формирование содержательных, научных представлений и понятий. (12, с.68)

Познание и отображение в представлениях общих связей и отношений дошкольники осуществляют посредством наглядно-действенного и наглядно-образного мышления (А. В. Запорожец, Л.А. Венгер, Н. Н. Поддьяков, С. Л. Новоселова и др.). Мы разделяем точку зрения, согласно которой все виды мышления развиваются одновременно и имеют непреходящее значение на протяжении всей человеческой жизни. Внешние, пробующие действия - исходная форма для развития действий образного и логического типа (Н.Н. Поддьяков). (20, с.56)

Организованный процесс наглядно-образного мышления - ознакомление с численными характеристиками пространства и времени - может быть основой развития предпосылок логического мышления. Решение мыслительных задач на установление пространственных и временных связей, причинных зависимостей, количественных отношений будет способствовать интеллектуальному развитию, формированию познавательных процессов в целом.

Математика должна занимать особое место в интеллектуальном развитии детей, в формировании познавательных процессов, должный уровень которых определяется качественными особенностями усвоения детьми таких исходных математических представлений и понятий, как счет, число, измерение, величина, геометрические фигуры, пространственные отношения. Отсюда очевидно, что содержание обучения должно быть направлено на формирование у детей этих основных математических представлений и понятий и вооружение их приемами математического мышления - сравнением, анализом, рассуждением, обобщением, умозаключением. (18,с.47)

В практике работы дошкольных учреждений накоплен достаточный опыт использования игр и игровых упражнений при обучении детей математике. В последние годы проведены исследования игр с математическим содержанием: сюжетно-дидактические игры математического содержания (А. А. Смоленцева); обучающие игры с элементами информатики и моделирования (А. А. Столяр); игры, направленные на интеллектуальное развитие детей (А. А. Зак, 3.А. Михайлова); строительно-конструктивные игры. Кроме этого, активно используются сюжетно-дидактические игры математического содержания, отражающие бытовые явления («Магазин», «Детский сад», «Путешествие», «Поликлиника» и др.), общественные события и традиции («Встреча гостей», «Праздник пришел» и др.).(27, с.124)

В процессе знакомства с новым содержанием и новыми действиями (сравнение предметов по величине, уравнивание количества, измерение) нужно использовать развернутые объяснения с показом действий и последовательности их выполнения. При этом объяснения должны быть предельно четкими, ясными, конкретными. Они даются в темпе, доступном восприятию ребенка.

Давая указания, педагог побуждает детей следить за действиями, разъясняет содержание действий и последовательность их выполнения, знакомит с их словесным обозначением. Успех обучения во многом зависит от организации учебного процесса. Хотелось бы обратить внимание на ряд положений. Обучение должно осуществляться как в  непосредсвенно-образовательной деятельности, так и в процессе самостоятельной деятельности детей.(25,с.48)

В НОД обязательно должна происходить смена деятельности: восприятие информации педагога, активная деятельность самих детей (работа с раздаточным материалом) и игровая деятельность (игра является обязательным компонентом занятия; все занятие строится в форме игры).

Специфика дошкольного образования состоит, прежде всего, том, что его содержание должно обеспечить формирование наиболее значимых психологических свойств и способностей ребенка, которые во многом определяют весь путь дальнейшего развития (А. В. Запорожец). Особенность обучения дошкольников - его организация в форме игры и связанных с ними продуктивных и художественных деятельностей. Образно-символический характер игры позволяет использовать ее в качестве средства развития воображения, наглядно-образного мышления, овладения знаковой функцией сознания и формирования предпосылок логического мышления. Эмоциональная насыщенность игровых действий и личностный смысл игрового взаимодействия способствуют развитию эмоционального отношения к миру, развитию самосознания и осознания себя как индивидуума, своего места среди других. Развитие умственных действий логического типа успешно происходит в процессе овладения детьми средствами выделения основных, существенных отношений, лежащих за непосредственными восприятиями, отражающими эти отношения в виде схем (Д. Б. Эльконин, П. Я. Гальперин, Л. Ф. Обухова и др.). (24, с.59)

Изучение психолого-педагогической литературы убеждают в необходимости дальнейшего исследования вопроса организации процесса обучения математике детей дошкольного возраста, разработки и внедрения инновационных технологий и активного использования разнообразных приемов активизации умственной активности детей: включение сюрпризных моментов и игровых упражнений; организация работы с дидактическим наглядным материалом; активное участие воспитателя в совместной деятельности с детьми; новизна умственной задачи и наглядного материала; выполнение нетрадиционных заданий, решение проблемных ситуаций.

1.2 Традиционные  и нетрадиционные формы и методы  обучения детей математике.

Наглядные, словесные и практические методы и приемы обучения на занятиях по математике( в образовательной области "Познание") в старшем дошкольном возрасте в основном используются в комплексе. Дети способны понять познавательную задачу, поставленную педагогом, и действовать в соответствии с его указанием. Постановка задачи позволяет возбудить их познавательную активность. Создаются такие ситуации, когда имеющихся знаний оказывается недостаточно для того, чтобы найти ответ на поставленный вопрос; и возникает потребность узнать что-то новое, научиться новому: Например, педагог спрашивает: «Как узнать, на сколько длина стола больше его ширины?» Известный детям прием приложения применить нельзя. Педагог показывает им новый способ сравнения длин с помощью мерки. (5, с.187)

Побудительным мотивом к поиску являются предложения решить какую-либо игровую или практическую задачу (подобрать пару, изготовить прямоугольник, равный данному, выяснить, каких предметов больше, и др.). Организуя самостоятельную работу детей с раздаточным материалом, педагог также ставит перед ними задачи (проверить, научиться, узнать новое). (5, с.188)

Закрепление и уточнение знаний, способов действий в ряде случаев осуществляется предложением детям задач, в содержании которых отражаются близкие, понятные им ситуации. Так, они выясняют, какой длины шнурки у ботинок и полуботинок, подбирают ремешок к часам и пр. Заинтересованность детей в решении таких задач обеспечивает активную работу мысли, прочное усвоение знаний.(7, с.49)

Математические представление «равно», «не равно, «больше - меньше», «целое и часть» и др. формируются на основе сравнения. Дети старшего дошкольного возраста могут под руководством педагога последовательно рассматривать предметы, выделять и сопоставлять их однородные признаки. На основе сравнения они выявляют существенные отношения, например отношения равенства и неравенства, последовательности, целого и части и др., делают простейшие умозаключения. Развитию операций, умственной деятельности (анализ, синтез, сравнение, обобщение) в старшем возрасте уделяют большее внимание. Все эти операции дети выполняют с опорой на наглядность.

Рассматривание, анализ и сравнение объектов при решении задач одного типа производятся в определенной последовательности. Например, детей учат последовательному анализу и описанию узора, составленного из моделей геометрических фигур, и др. Постепенно они овладевают общим способом решения задач данной категории и сознательно им пользуются. (10, с.95)

Так как осознание содержания задачи и способов ее решения детьми этого возраста осуществляется в ходе практических действий, ошибки, допускаемые детьми, всегда исправляются через действия с дидактическим материалом.

В работе с детьми старшего дошкольного возраста повышается роль словесных приемов обучения. Указания и пояснения педагога направляют и планируют деятельность детей. Давая инструкцию, он учитывает, что дети знают и умеют делать, и показывает только новые приемы работы. Вопросы педагога в ходе объяснения стимулируют проявление детьми самостоятельности и сообразительности, побуждая их искать разные способы решения одной и той же задачи: "Как еще можно сделать? Проверить? Сказать?" (10, с.102)

Детей учат находить разные формулировки для характеристики одних и тех же математических связей и отношений. Существенное значение имеет отработка в речи новых способов действия. Поэтому в ходе работы с раздаточным материалом педагог спрашивает то одного, то другого ребенка, что, как и почему он делает. Один ребенок может выполнять в это время задание у доски и пояснять свои действия. Сопровождение действия речью позволяет детям его осмыслить. После выполнения любого задания следует опрос. Дети отчитываются, что и как они делали и что получилось в результате.(10, с.108)

По мере накопления умения выполнять те или иные действия ребенку можно предложить сначала высказать предположение, что и как надо сделать, (построить ряд предметов, сгруппировать их и пр.), а потом выполнить практическое действие. Так учат детей планировать способы и порядок выполнения задания. Усвоение правильных оборотов речи обеспечивается многократным их повторением в связи с выполнением разных вариантов заданий одного типа.

В старшей группе начинают использовать словесные игры и игровые упражнения, в основе которых лежат действия по представлению: "Скажи наоборот!", "Кто быстрее назовет?", "Что длиннее (короче)?" и др. Усложнение и вариантность приемов работы, смена пособий и ситуаций стимулируют проявление детьми самостоятельности, активизируют их мышление. Для поддержания интереса к занятиям математикой педагог постоянно вносит в них элементы игры (поиск, угадывание) и соревнования: "Кто быстрее найдет (принесет, назовет)?" и т. д.(12, с.110)

Игра начала успешно использоваться в обучении детей до школы с середины прошлого века. В исследованиях отечественных педагогов и психологов подчеркивалась многоплановая взаимосвязь и взаимовлияние игры и обучения. В играх актуализируется интеллектуальный опыт, конкретизируются представления о сенсорных эталонах, совершенствуются умственные действия, накапливаются положительные эмоции, которые повышают познавательные интересы дошкольников.(15, с.113)

В работе с детьми используются дидактические игры с народными игрушками - вкладышами (матрешки, кубы), пирамидами, в конструкции которых заложен принцип учета величины. На этот принцип обращается особое внимание детей: в большую матрешку можно поставить маленькую; в большой куб — маленький; чтобы сделать пирамиду, надо вначале вставить большое кольцо, затем поменьше и самое маленькое. С помощью этих игр дети упражняются в нанизывании, вкладывании, собирании целого из частей; приобретали практический, чувственный опыт различения величины, цвета, формы предмета, учились обозначать эти качества словом. Дидактические игры используются как для закрепления, так и для сообщения новых знаний ("Одевание кукол", "Покажи, что больше, а что меньше", "Чудесный мешочек", "Три медведя", "Что изменилось?", "Палочки в ряд", "Наоборот", "Сломанная лестница", "Чего не стало?", "Узнай по описанию" и др.).(29, с.257)

Игровые задачи решаются непосредственно - на основе усвоения математических знаний - и предлагаются детям в виде несложных игровых правил. На занятиях и в самостоятельной деятельности детей проводятся подвижные игры математического содержания («Медведь и пчелы", "Воробушки и автомобиль", "Ручейки", "Найди свой домик", "В лес за елочками" и др.).(29, с.216)

Информация о работе Развитие познавательного интереса к математике, как одно из условий формирования познавательных процессов старших дошкольников