Автор работы: Пользователь скрыл имя, 26 Июня 2012 в 19:56, реферат
Случайной называют величину, принимающую в результате эксперимента одно только значение из некоторой их совокупности и неизвестное заранее, какое именно.
Случайная величина, к примеру, представляет собой обоснованную модель описания геологических данных, учитывающую влияние различных факторов на физическое поле.
I. Теоретические основы закона о нормальном распределении случайной величины……..3
1. Случайная величина и её основные характеристики……………………………………………...3
1.1. Определения.………………………………………………………………………………………3
1.2. Гистограмма. Полигон частот. Непрерывное распределение………………………………….5
1.3. Свойства основных характеристик случайной величины……………………………………...6
1.4. Свойства показателей вариации………………………………………………………………….7
2. Функции распределения случайной величины. Свойства………………………………………...8
2.1. Функция распределения…………………………………………………………………………..8
2.2. Свойства функции распределения……………………………………………………………...10
2.3. Свойства функции плотности распределения………………………………………………….10
3. Нормальное распределение………………………………………………………………………..13
3.1. Определение нормального распределения……………………………………………………..13
3.2. Свойства нормального распределения…………………………………………………………17
3.3. Сравнение экспериментального распределения с нормальным законом…………………….19
4. Моделирование нормальной случайной величины………………………………………………22
4.1. Центральная предельная теорема……………………………………………………………….22
4.2. Преобразования Бокса-Мюллера……………………………………………………………….23
5. Проверка статистических гипотез…………………………………………………………………25
5.1. Этапы проверки статистических гипотез………………………………………………………28
5.2. Виды критической области……………………………………………………………………...29
5.3. Критерий хи-квадрат Пирсона…………………………………………………………………..29
5.4. Критерий Колмагорова…………………………………………………………………………..30
5.5. Критерий Вилкоксона……………………………………………………………………………31
5.6. Критерий Стьюдента…………………………………………………………………………….32
II. Краткий обзор теории по петрофизики………………………………………………………...34
1. Определение петрофизики…………………………………………………………………………34
2. Проницаемость……………………………………………………………………………………...36
2.1. Определение. Уравнение Дарси………………………………………………………………...36
2.2. Определение проницаемости в лабораторных условиях……………………………………...39
III. Сопоставление экспериментальных данных с нормальным законом распределения…..42
Свойство 9. Форма кривой не изменяется при изменении параметра .
Рис.3.7. График нормальной функции распределения
3.3. Сравнение экспериментальных распределений с нормальным законом
Для того чтобы сравнивать любое экспериментальное распределение с нормальным, выполняют стандартизацию распределения по следующему несложному алгоритму.
1. Строят графики функций распределения экспериментального и нормального рядов в едином масштабе, после чего совмещают эти графики наложением друг на друга, начиная с нулевой точки
Рис.3.8. Графическая интерпретация алгоритма стандартизации функции распределения
2. Может случиться так, что линии для нормального ряда и для экспериментального совпадут, как на рис.9.15б . Тогда данный пункт алгоритма следует опустить и сразу перейти к следующему. Но если эти линии не совпадают (рис.9.15а ), то тогда от каждого элемента экспериментального ряда отнимают, если (прибавляют, если ) величину, равную . Эта операция называется центрированием. Она позволяет совместить на одной прямой максимумы построенных функций (рис.9.15 б). Таким образом в результате данного шага от исходного экспериментального ряда переходят к
3. Завершают процедуру стандартизации ряда операцией нормировки на рассеяние (рис.9.15в ) по формуле
Полученное распределение можно сравнивать с нормальным (эталонным). А функция распределения нового (преобразованного) ряда в силу своих особенностей, которые здесь не обсуждаются, получила название кумулятивной функции распределения.
Если построенное нормальное распределение имеет и , то график называют нормированным, а функция обладает всеми свойствами нормированной кривой. Такие функции широко используются для расчетов теоретических кривых распределений. А сама выглядит следующим образом
Очевидно, что функция является четной, т.е.
Для того чтобы определить, находится ли экспериментальная величина в границах таких, как если бы она была бы нормально распределена, исследуют кумулятивную функцию распределения, больше известную как функцию Лапласа
где . Тогда на основании свойства 2 интегральной функции распределения, вероятность того, что случайная величина попадет в интервал определиться из
где .
Из равенства и свойства можно сформулировать правило 3-х сигм, известное как критерий Чебышева.
Правило 3-х сигм (критерий Чебышева). Если случайная величина распределена по нормальному закону, то отклонение этой величины от математического ожидания ряда не превосходит влево и вправо от .
Это правило на практике используется как необходимое условие для того, чтобы данный экспериментальный ряд был распределен по нормальному закону. Это значит что, если правило не выполняется, то ряд экспериментальных данных не подчиняется нормальному закону распределения. Но это утверждение не всегда верно в "обратную сторону", т.е. если правило выполняется, то ряд экспериментальных данных подчиняется нормальному закону распределения. Иными словами, выполнение этого правила не гарантирует, что исследуемый ряд распределен нормально. Необходимы дополнительные исследования ряда.
4. Моделирование нормальной случайной величины
Простейшие, но неточные методы моделирования основываются на центральной предельной теореме. Именно, если сложить много независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых базовых случайных величин, получится грубое приближение стандартного нормального распределения. Тем не менее, с увеличением слагаемых распределение суммы стремится к нормальному.
Использование точных методов предпочтительно, поскольку у них практически нет недостатков. В частности, преобразование Бокса — Мюллера является точным, быстрым и простым для реализации методом генерации.
4.1. Центральная предельная теорема
ЦПТ — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.
Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.
4.1.1. Классическая формулировка Ц.П.Т.
Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное математическое ожидание и дисперсию. Обозначим последние и , соответственно. Пусть также
Тогда
по распределению при
где — нормальное распределение с нулевым математическим ожиданием и стандартным отклонением, равным единице. Обозначив символом выборочное среднее первых величин, то есть , мы можем переписать результат центральной предельной теоремы в следующем виде:
по распределению при .
Замечания
Неформально говоря, классическая центральная предельная теорема утверждает, что сумма независимых одинаково распределённых случайных величин имеет распределение, близкое к . Эквивалентно, имеет распределение близкое к .
Так как функция распределения стандартного нормального распределения непрерывна, сходимость к этому распределению эквивалентна поточечной сходимости функций распределения к функции распределения стандартного нормального распределения. Положив , получаем , где — функция распределения стандартного нормального распределения.
4.1.2. Локальная Ц.П.Т.
В предположениях классической формулировки, допустим в дополнение, что распределение случайных величин абсолютно непрерывно, то есть оно имеет плотность. Тогда распределение также абсолютно непрерывно, и более того,
где - плотность случайной величины , а в правой части стоит плотность стандартного нормального распределения.
4.2. Преобразование Бокса-Мюллера
Преобразование Бокса — Мюллера — метод моделирования стандартных нормально распределённых случайных величин. Имеет два варианта. Метод является точным, в отличие, например, от методов основывающихся на центральной предельной теореме.
Метод был опубликован в 1958 году Джорджем Боксом и Мервином Мюллером.
4.2.1. Первый метод
Пусть и — независимые случайные величины, равномерно распределённые на интервале (0, 1]. Вычислим и по формулам
Тогда и будут независимы и распределены нормально с математическим ожиданием 0 и дисперсией 1. При реализации на компьютере обычно быстрее не вычислять обе тригонометрические функции — и — а рассчитать одну из них через другую. Ещё лучше воспользоваться вместо этого вторым вариантом преобразования Бокса — Мюллера.
4.2.2. Второй метод
Пусть и — независимые случайные величины, равномерно распределённые на отрезке [−1, 1]. Вычислим . Если окажется, что или , то значения и следует «выбросить» и сгенерировать заново. Как только выполнится условие , по формулам
И
следует рассчитать и , которые, как и в первом случае, будут независимыми величинами, удовлетворяющими стандартному нормальному распределению.
Коэффициент использования базовых случайных величин для первого варианта, очевидно, равен единице. Для второго варианта это отношение площади окружности единичного радиуса к площади квадрата со стороной два, т. е. .
Тем не менее, на практике второй вариант обычно оказывается быстрее, за счёт того, что в нём используется только одна трансцендентная функция, . Это преимущество для большинства реализаций перевешивает необходимость генерации большего числа равномерно распределённых случайных величин.
4.2.3. Переход к общему нормальному распределению
После получения стандартной нормальной случайной величины , можно легко перейти к величине распределённой нормально с математическим ожиданием и стандартным отклонением по формуле
Это уже не является частью преобразования Бокса — Мюллера, но позволяет завершить генерацию нормальной случайной величины.
5. Проверка статистических гипотез
Статистическая гипотеза представляет собой некоторое предположение о законе распределения случайной величины или о параметрах этого закона, формулируемое на основе выборки. Примерами статистических гипотез являются предположения: генеральная совокупность распределена по экспоненциальному закону; математические ожидания двух экспоненциально распределенных выборок равны друг другу. В первой из них высказано предположение о виде закона распределения, а во второй – о параметрах двух распределений. Гипотезы, в основе которых нет никаких допущений о конкретном виде закона распределения, называют непараметрическими, в противном случае – параметрическими.
Гипотезу, утверждающую, что различие между сравниваемыми характеристиками отсутствует, а наблюдаемые отклонения объясняются лишь случайными колебаниями в выборках, на основании которых производится сравнение, называют нулевой (основной) гипотезой и обозначают Н0. Наряду с основной гипотезой рассматривают и альтернативную (конкурирующую, противоречащую) ей гипотезу Н1. И если нулевая гипотеза будет отвергнута, то будет иметь место альтернативная гипотеза.
Различают простые и сложные гипотезы. Гипотезу называют простой, если она однозначно характеризует параметр распределения случайной величины. Например, если l является параметром экспоненциального распределения, то гипотеза Н0 о равенстве l =10 – простая гипотеза. Сложной называют гипотезу, которая состоит из конечного или бесконечного множества простых гипотез. Сложная гипотеза Н0 о неравенстве l >10 состоит из бесконечного множества простых гипотез Н0 о равенстве l =bi , где bi – любое число, большее 10. Гипотеза Н0 о том, что математическое ожидание нормального распределения равно двум при неизвестной дисперсии, тоже является сложной. Сложной гипотезой будет предположение о распределении случайной величины Х по нормальному закону, если не фиксируются конкретные значения математического ожидания и дисперсии.
Проверка гипотезы основывается на вычислении некоторой случайной величины – критерия, точное или приближенное распределение которого известно. Обозначим эту величину через z, ее значение является функцией от элементов выборки z=z(x1, x2, …, xn). Процедура проверки гипотезы предписывает каждому значению критерия одно из двух решений – принять или отвергнуть гипотезу. Тем самым все выборочное пространство и соответственно множество значений критерия делятся на два непересекающихся подмножества S0 и S1. Если значение критерия z попадает в область S0, то гипотеза принимается, а если в область S1, – гипотеза отклоняется. Множество S0 называется областью принятия гипотезы или областью допустимых значений, а множество S1 – областью отклонения гипотезы или критической областью. Выбор одной области однозначно определяет и другую область.
Принятие или отклонение гипотезы Н0 по случайной выборке соответствует истине с некоторой вероятностью и, соответственно, возможны два рода ошибок. Ошибка первого рода возникает с вероятностью a тогда, когда отвергается верная гипотеза Н0 и принимается конкурирующая гипотеза Н1. Ошибка второго рода возникает с вероятностью b в том случае, когда принимается неверная гипотеза Н0, в то время как справедлива конкурирующая гипотеза Н1. Доверительная вероятность – это вероятность не совершить ошибку первого рода и принять верную гипотезу Н0. Вероятность отвергнуть ложную гипотезу Н0 называется мощностью критерия. Следовательно, при проверке гипотезы возможны четыре варианта исходов
Гипотеза Н0 | Решение | Вероятность | Примечание |
Верна | Принимается | 1-а | Доверительная вероятность |
Отвергается | а | Вероятность ошибки первого рода | |
Неверна | Принимается | b | Вероятность ошибки второго рода |
Отвергается | 1-b |
Мощность критерия |