Получение и исследование стволовых клеток трансформированных геном красного флуоресцентного белка

Автор работы: Пользователь скрыл имя, 27 Июня 2012 в 14:02, дипломная работа

Краткое описание

Работа посвящена вопросу о флуоресцентных белках и генной инженерии.В работе кратко изложена история открытия белков их биологическое и генетическое значение в современном мире. Так же рассказывается о работе по молекулярной биологии с использованием флуоресцентных белков. Работа защищена на отлично.

Содержание

ВВЕДЕНИЕ 4-7
ОБЗОР ЛИТЕРАТУРЫ 8-51
1. Стволовые клетки 8-36
1.1. Понятие о стволовых клетках 8-10
1.2. Классификация стволовых клеток 10-13
1.3. Свойства стволовых клеток 13-17
1.4. Особенности региональных нейральных стволовых клеток 17-20
1.5. Стволовые клетки, как удобная модель для анализа роли генов в процессе дифференцировки 20-21
1.6. Стволовые клетки перспективы использования в медицине 22-25
1.7.Генная терапия 26-36
1.7.1. Понятие о генной терапии 26-27
1.7.2. Условия проведения генной терапии 27-30
1.7.3.Проблема генной и клеточной терапии 31-33
1.7.4. Лечение заболеваний с помощью генной терапии 33-36
2.Флуоресцентные белки 36-47
2.1. Открытие зеленого флуоресцентного белка 36
2.2. Биохимические, спектральные и физические свойства GFP 36-37
2.3. Трехмерная структура GFP 37-41
2.4. Трехмерная структура DsRed 41-44
2.5. Использование GFP-подобных белков для изучения подвижности клеток, клеточных белков и органелл 44-47
3.Векторы 47-48
3.1. Вектор pcDNA 3.1+ 48-49
3.2. CMV – промотор 49-50
4. Заключение 51
МАТЕРИАЛЫ И МЕТОДЫ 52-55
Ферменты и реактивы 52
Приготовление компетентных клеток 52
Трансформация бактерий E.coli XL I-Blue плазмидами 52-53
Выделение плазмидной ДНК из E.coli 53
Электрофорез в агарозном геле 53
Рестрикция 53
Контроль наличия вставки (блот-гибридизация по Саузерну). 54-55
Достраивание липких концов ДНК до тупых 55
Лигирование 55
Конструкции 55
РЕЗУЛЬТАТЫ 56-66
Обсуждение результатов 67-68
Выводы 69
Список сокращений
Список литературы 70-79

Вложенные файлы: 1 файл

ДИПЛОМ new.doc

— 2.71 Мб (Скачать файл)

38.       Gage F., Ray J., Fisher J. Isolation, characterization and use of stem cells from the CNS.  Ann.Rev. Neurosci. 1995. V.18.  P. 159-192.

39.       Gaietta G., Deerinck T.J. Adams S.R., Bouwer J., Tour O., Laird D.W., Sosinsky G.E., Tsien R.Y., and Ellisman M.H. (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science,  503-507.

40.       Gavin P.,  Devenish R.J., and Prescott M. (2002) An approach for reducing unwanted oligomerisation of DsRed fusion proteins. Biochem. Biophys. Res. Commun.,  707-713.

41.       Gershon M. Genes and lineages in the formation of the enteric nervous system // Curr. Opin. Neurobiol. 1997. V. 7. P. 101-109.

42.       Guo, Z. S., L.-H. Wang, R. C. Eisensmith, and S. C. L. Woo. 1996. Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Ther. 3:802-810

43.       Gurskaya N.G., Savitskiy A.P., Yanushevich Y.G., Lukyanov S.A., and Lukyanov K.A. 2001. Color transitions in coral`s fluorescent proteins by site-directed mutagenesis. BMC Biochem., 2:6 ( online only).

44.       Johnson F. H., Shimomura O., Saiga Y., Gershman L., Reynolds G., and Waters J.R. (1962) quantum efficiency of Cybridia luminescences, with a note on that of Aequorea. J. Cell. And Comp. Physiol., 85-103.

45.       Hanson G.T., McAnaney T.B., Park E.S., Rendell M.E., Yarbrough D.K., Chu S., Xi L., Boxer S.G., Montrose M.H., and Remington S.J. (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. Structural characterization and preliminary application. Biochemistry, 41, 15477-15488.

46.       Heim R., and Tsien R. Y., (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol., 6, 178-182.

47.       Heim R., Cubitt A.B., and Tsien R.Y. (1995) Improved green fluorescence (letter). Nature, 373, 663-664.

48.       Heim R., Prasher D.C., and Tsien R.Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA, 91, 12501-12504.

49.       Hofstetter C., Schwarz E., Hess D. et al.  2002. Proc. Nat. Acad. Sci. V. 99. N 4. P.2199-2204.

50.       Kahana J., and  Silver P. (1996) Current Protocols in Molecular Biology, Ausabel F. et all., Editors. Green and Wiley: NY. P.9.7.22-9.7-28.

51.       Kelli D., Rizzino A. DNA microarray analysis of genes regulated during the differentiation of embryonic stem cells // Mol. Reprod. Develop. 2000. V. 56. № 1. P. 113-123.

52.       Kim D.H., Je C.M., Sin J.Y., Jung J.S. 2003. Effect of partial hepatectomy on in vivo engraftment after intra­venous administration of human adipose tissue stromal cells in mouse. Microsurgery. 23,424-431.

53.       Kopen G.C., Prockop D.J., Phinney D.G. 1999. Marrow stromal cells migrate throughout forebrain and cerebel­lum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA. 96,10711-10716.

54.       Krause D.S., Theise N.D., Collector M.I., Henegariu O., Hwang S., Gardner R., Neutzel S., Sharkis S J. 2001. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 105,369-377.

55.       LaBarge M.A., Blau H.M. 2002. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell. 111, 589-601.

56.       Lаuf U, Lopez P, and Falk M.M., (2001) Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins.FEBS Lett., 498, 11-15.

57.       Lovell-Badge R. The future for stem cell research. Nature. 2001. V. 414. 88-91.

58.       Lin L, Doherty D.. Lin J. et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminersic neurons// Science. 1993. V. 260. № 6. P. 1130-1132."

59.       Llopis J., McCaffery J.M., Miyawaki A., Farquhar M.G., and Tsien R.Y. (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. USA, 95, 6803-6808.

60.       Makarov A.V., Kovalenko D.V., Brown C.E. et al. NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint // Proc. Nat. Acad. Sci. 1998. V. 95. P. 13959-13864.

61.       Makino S., Fukuda K., Miyoshi S., Konishi F., Kodoma H., Pan J., Sano M., Takahashi Т., Hori S., Abe H., Hata J., Umezawa A., Ogawa S. 1999. Cardi-omyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103,697-705.

62.       Mauraglia A., Cancedda R., Quarto R. 2000. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. /. Cell Sci. 113,1161-1166.

63.       Mezey E., Chandross K.J., Harta G., Maki R.A., McKercher S.R. 2000. Turning blood into brain: cells bearing neuronal antigens generated in vivo brom bone marrow. Science. 290, 1779-1782.

64.       Miyawaki A., Llopis J., Heim R., McCaffery J.M., Adams J.A., Ikura M., and Tsein R.Y. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature, 28, 882-887.

65.       Morin J.G., and Hastings J.W. (1971 a) Energy transfer in a bioluminescent system. J. Cell. Physiol., 77, 313-318.

66.       Nagai T., Sawano A., Park E.S., and Miyawaki A. (2001) Circularly permuted green fluorescent protein engineered to sense Ca2+. Proc. Natl. Acad. Sci. USA,  3197-3202.

67.       Newsome P.N., Johannessen I., Boyle S., Dalakas E., McAulay K.A., Samuel K., Rae F., Forrester L., Turner M.L., Hayes P.C., Harrison D.J., Bickmore W.A., Plevris J.N. 2003. Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology. 124, 1891-1900.

68.       Niwa H., Inouye S., Hirano T., Matsuno T., Kojima S., Kubota M., Ohashi M., and Tsuji F.I. (1997) Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc. Natl. Acad. Sci. USA,  13617-22

69.       Оrmö M., Kubitt A.B. Kallio K., Gross L.A., Tsien R.Y., and Remington S.J. (1996) Crystal structure of the Aequorea Victoria green fluorescent protein. Science, 273, 1392-1395.

70.       Ortiz L.A., Gambelli F., McBride C., Gaupp D., Baddoo M., Kaminski N., Phinney D.G. 2003. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl. Acad. Sci. USA. 100,8407-8411

71.       Patterson G., Day R.N., and Piston D. (2001) Fluorescent protein spectra. J. Cell Sci., 114, 837-838.

72.       Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R.,    Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science. 284,143-147.

73.       Pittenger M.F., Marshak D.R. 2001. Mesenchymal stem cells of human adult bone marrow. In: Stem Cell Biology. Eds. Marshak D.R., Gardner O.K., Gottlieb D. Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press, 349-374.

74.       Pavlova  G., Enblom  A., Revishchin A., Sandelin M., Korochkin  L.,  Kozlova E. The  influence of  donor  age, nerve  growth  factor  and cografting    with  Drosophila  cells on  survival  of  peripherally  grafted embryonic  or  fetal  rat  dorsalp  root   ganglia. Cell transplpantation.2003. V. 12.  P. 705-715.

75.       Perrozo M.A., Ward K.B., Thompson R.B., and Ward W.W. (1998) X-ray diffraction and time-resolved fluorescence analyses of Aequorea green fluorescent protein crystals. J. Biol. Chem., 263, 7713-7716.

76.       Peter Löser, Gary S. Jennings, Michael Strauss,, and Volker Sandig. Reactivation of the Previously Silenced Cytomegalovirus Major Immediate-Early Promoter in the Mouse Liver: Involvement of NFB, J Virol, January 1998, p. 180-190, Vol. 72, No.

77.       Prasher D.C., Eckenrode V.K., Ward W.W., Prendergast F.G., and Cormier M.J. (1992) Primary structure of the Aequorea Victoria green fluorescent protein. Gene, 111, 229-233.

78.       Sambrook, J., Fritsch, T.F. and Maniatis, T., Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York . 1989.

79.       Seigel M.S., Isacoff E.Y. 1997. A genetically encoded optical probe of membrane voltage. Neuron, 19, 735-741.

80.       Taniguchi К., Kohsaka H., lnone N. et al. Induction of the p16INK4a senescence gene as a new therapeutic strategy for the treatment of rheumatoid arthritis // Nature Medicine. 1999. V. 5. P. 760-767.

81.       Terkish A., Fradkov A., Ermakova G., Zaraysky A., Tan P., Kajava A.V., Zhao X., Lukyanov S., Matz M., Kim S., Weissman I., and Siebert P. 2000. “Fluorescent Timer”: Protein that changes color with time. Science, 290, 1585-1588.

82.       Theise N.D., Krause D.S. 2002. Toward a new para­digm of cell plasticity. Leukemia. 16, 542-548.

83.       Tremain N., Korkko J.. Iberson D. et al. MicroSAGE analysis of 2353 expressed genes in a single cell derived colony of human mesenchymal stem cells reveals mR-NA of multiple cell lineaged // Stem Cells. 2001. V. 19. №3. P. 408^18.

84.       Wall M.A., Socolich M., and Ranganathan R. (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol., 7, 1133-1138

85.       Ward W.W. (1979) Energy transfer processes in bioluminescence. Photochem. Photobiol., 4, 1-57.

86.       Ward W.W. and Cormier M.J. (1979) An energy transfer protein in Coelenterate bioluminescence: characterization of Renilla green fluorescent protein. J. Biol. Chem., 254, 781-788.

87.       Ward W.W., and Bokman S.H. (1982) Reversible denaturation of Aequorea green fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry, 21, 4535-4540.

88.       Ward W.W.,  Prentice H., Roth A., Cody C. and Reeves S. (1982) Spectral perturbations of the Aequorea green fluorescent protein. Photochem. Photobiol., 35, 803-808.

89.       Wilson. T., and Hasting J.W. (1998) Bioluminescence. Annu. Rev. Cell Dev. Biol., 14, 197-230.

90.       Wolff J.A., Lederberg L. A history of gene transfer and therapy // Genetherapeutics. Methods and applications of direct gene transfer / Ed. J.A. Wolif. Boston-Basel-Berlin: Birkhauser, 1994. P. 3-25.

91.       Woodbury D., Schwarz E.J., Prockop D.J., Black I.B. 2000. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61,364-370.

92.       Yang F. Moss L.G., and Phillips G.N. (1996) The molecular structure of green fluorescent protein. Nat. Biotechnol., 14, 1246-1251.

- 56 -

 



Информация о работе Получение и исследование стволовых клеток трансформированных геном красного флуоресцентного белка