Методика использования дидактических игр на уроках математики в начальной школе

Автор работы: Пользователь скрыл имя, 29 Апреля 2013 в 13:18, курсовая работа

Краткое описание

Актуальность выбранной темы подтверждается тем, что новые подходы к совершенствованию учебно-воспитательного процесса с целью формирования всесторонне развитой и творчески мыслящей личности младшего школьника во многом зависит от умения ими решать нестандартные задачи. До сих пор в обучении математике не преодолены стереотипы, которые мешают достижению поставленной перед школой цели гармонического развития личности учащегося. К подобным недоработкам в сфере методики обучения решению задач относятся следующие:

Содержание

Введение.............................................................................................................. 3
Глава 1 Проблема игровой деятельности в педагогической и методической литературе........................................................................................................... 7
1.1. Понятие об игре и её видах............................................................ 7
1.2. Особенности использования игр в 1 классе.................................23
Глава 2 Методика использования дидактических игр на уроках математики в 1 классе при изучении темы “Нумерация чисел
в пределах сотни”............................................................................................ 27
2.1. Особенности использования дидактических игр при
объяснении нового материала.................................................. 27
2.2. Способы использования дидактических игр при закреплении
материала.................................................................................... 34
2.3. Особенности применения дидактических игр при обобщении
знаний учащихся.......................................................................... 43
Заключение........................................................................................................ 49
Литература......................................................................................................... 51
Приложение....................................................................................................... 54

Вложенные файлы: 1 файл

курсовая (2).doc

— 268.00 Кб (Скачать файл)

«При отборе комбинаторных задач  нужно обращать внимание на тематику и форму представления этих задач. Мы старались, чтобы задачи не выглядели искусственным, а были понятны и интересны детям, вызывали у них положительные эмоции. Желательно, для составления задач использовать практический материал из жизни».

Способы решения математических софизмов.

Софизм – доказательство ложного  утверждения, причём ошибка в доказательстве искусно замаскировано. Софизм в  переводе с греческого означает хитроумную выдумку, ухищрение, головоломку.

Ошибки, допущенные в софизме обычно сводятся к следующим: выполнению «запрещённых» действий, использованию ошибочных чертежей, неверному словоупотреблению, неточности формулировок, «незаконным» обобщениям, неправильным применениям теорем.

Раскрыть софизм – это, значит, указать ошибку в рассуждении, основываясь на которой была создана внешняя видимость доказательства.

Разбор софизмов, прежде всего, развивает  логическое мышление, прививает навыки правильного мышления.

Обнаружить ошибку в софизме  – это, значит, осознать её, а осознание ошибки предупреждает от повторения её в других математических рассуждениях.

Помимо критичности математического  мышления этот вид нестандартных  задач выявляет гибкость мышления. Сумеет ли ученик «вырваться из тисков»  этого строго логичного на первый взгляд пути, разорвать цепь умозаключений в том самом звене, которое является ошибочным и делает ошибочным все дальнейшие рассуждения?

Разбор софизмов помогает также  сознательному усвоению изучаемого материала, развивает наблюдательность и критическое отношение к тому, что изучается.

Вот, к примеру, софизм с неправильным применением теоремы.

Докажем, что 2*2=5.

Возьмём в качестве исходного соотношения  следующее очевидное равенство:

4:4=5:5 (1)

Перепишем его в таком виде:

1*(1:1)=5*(1:1) (2)

Числа в скобках равны, значит, 4=5 или 2*2=5.

Решение: в рассуждении при переходе от равенства (1) к равенству (2) создана  иллюзия правдоподобия на основе ложной аналогии с распределительным  свойством умножения относительно сложения.

Или другой софизм с использованием «незаконных» обобщения.

Имеются две семьи – Ивановых и Петровых. Каждая состоит из 3 человек  – отца, матери и сына. Отец Иванов не знает отца Петрова. Мать Иванова  не знает матери Петровой. Единственный сын Ивановых не знает единственного  сына Петровых. Вывод: ни один член семьи Ивановых не знает ни одного члена семьи Петровых. Верно ли это?

Решение: если член семьи Ивановых не знает равного себе по семейному статусу члена семьи Петровых, то это не значит, что он не знает всю семью. Например, отец Иванов может знать мать и сына Петровых (как заметил ученик экспериментального класса Морозов Саша).

Хотя общих правил для решения нестандартных задач нет ( по этому эти задачи и называются нестандартными ), однако мы постарались дать ряд общих указаний – рекомендаций, которыми следует руководствоваться при решении нестандартных задач разных видов.

Математические ребусы, кроссворды, шарады

Ребус – это загадка, но загадка  не совсем обычная. Слова и числа  в математических ребусах изображены при помощи рисунков, звездочек, цифр и различных знаков. Чтобы прочесть то, что зашифровано в ребусе, надо правильно назвать все изображенные предметы и понять, какой знак что изображает. Ребусами люди пользовались еще тогда, когда не умели писать. Свои письма они составляли из предметов. Например, вожди одного племени послали однажды своим соседям вместо письма птицу, мышь, лягушку и пять стрел. Это означало: «Умеете ли летать как птицы и прятаться в земле как мышь, прыгать по болотам как лягушки? Если не умеете, то не пробуйте воевать с нами. Мы осыпям вас стрелами, как только вы вступите в нашу страну».

Числовые ребусы – это примеры, в которых все или некоторые  цифры заменены звездочками или  буквами. При этом одинаковые буквы  заменены звездочками или буквами. При этом одинаковые буквы заменяют одинаковые цифры, разные буквы – разные цифры. (Л.П.Терентьева Решение нестандартных задач уч. пособие Ч.2002 стр.19)

 

 

 

2.3 Содержание и организация опытно-экспериментальной работы

 

В ходе исследовательской работы нами были выдвинуты следующие задачи:

определить возможности нестандартных  задач в процессе развития математического  мышления младших школьников;

изучить, как используются подобные задачи в практике работы учителей;

разработать на основе опыта работы передовых учителей методику обучения учащихся поисковой деятельности при решении нестандартных задач.

Руководствуясь перечисленными задачами, наше исследование проходило в несколько  этапов.

Первый этап был посвящён изучению психолого-педагогической, математической, методической литературы по данной теме с целью сравнения возможностей нестандартных и типичных задач в качестве средства развития математического мышления.

На втором этапе анализировался опыт учителей МОУ «Смышляевская СОШ №3» Волжского района Самарской области по практическому применению нестандартных задач на уроках математики в начальных классах.

На третьем этапе проводилась  разработка и апробация методики обучения учащихся решению нестандартных  задач.

У них накоплен определенный опыт в составлении и использовании  миниатюрных книг по занимательной математике. Первую из них – «Десять задач» - можно было сделать из материала книги В.Н.Русанова

« Математические олимпиады младших  школьников». Эксперимент оказался плодотворным. Когда стали собирать и составлять свои книги, то некоторые из них имели вкладыши, из которых можно было сделать мини-книги. Так из «математических сундучков» появились книжечки: «Подарок для смекалистых», «Лакомство для ума» и др.

Такие книги предназначены для  увлекательной самостоятельной  работы индивидуального характера. Вот почему они снабжены ответами к задачам, решениями и указаниями к ним.

Книги из этой серии используются во фронтальной внеклассной работе, например. На занятиях кружка, посвященных  знакомству с математической литературой.

В практике современного обучения математике на решение задач отводится большая часть времени как на уроках, так и при выполнении школьниками домашних заданий. Но из-за использования только типовых задач это учебное время используется неэффективно, что отрицательно сказывается на качестве обучения математике в целом.

Известный педагог-математик Д. Пойа так высказался по этому поводу: «Что значит владение математикой? Это  есть умение решать задачи, причём не только стандартные, но и требующие известной  независимости мышления, здравого смысла, оригинальности, изобретательности».

Общепризнана связь мышления и процесса решения задач: «мышление психологически выступает как деятельность по решению задач». И хотя мышление не отождествляется процессу решения задачи, можно утверждать, что формирование мышления эффективнее всего осуществляется через решение задач. Учитывая, что «задача - это осело, на котором оттачивается, шлифуется мысль ребёнка, мысль связанная, последовательная, доказательная», в ходе решения математической задачи можно формировать у школьников элементы творческого математического мышления вместе с реализации основных целей обучения математике. Но осуществить это можно в том случае, если в школьном курсе математики будет содержаться методическая система нестандартных задач, процесс решения которых формирует у учащихся познавательный интерес, и самостоятельность, развивает математические способности.

Для настоящего времени характерна тенденция к повышению роли проблемного  обучения, поэтому решение нестандартных  задач занимает всё более ведущее место в обучении математике, в котором основной акцент ставится на самостоятельное и творческое усвоение школьниками учебного материала, на формирование их математического развития.

Такой огромный и ещё до конца  не изученный потенциал нестандартных задач уже используется многими учителями МОУ «Смышляевская СОШ №3» Волжского района Самарской области . Но чаще всего в своей деятельности они применяют логические задачи и задачи-шутки не замечая развивающих свойств других видов нестандартных задач: числовых ребусов, головоломок на смекалку, задач на взвешивание и переливание, математических софизмов, комбинаторных задач.

Одной из особенностей нестандартных  задач является то, что в их решении  нельзя «натаскать» учеников, заучить  с ними последовательность операций, которая лежит в основе решения определённых видов нестандартных задач, что не исключается при решении задач типовых. Каждая нестандартная задача оригинальна и неповторима в своём решении. В связи с этим разработанная нами методика обучения поисковой деятельности при решении нестандартных задач не формирует навыки решения нестандартных задач, речь может идти лишь об отработке определённых умений:

умения понимать задачу, выделять главные (опорные) слова;

умения выявлять условие и вопрос, известное и неизвестное в задаче;

умения находить связь между  данным и искомым, то есть проводить  анализ текста задачи, результатом  которого является выбор арифметического  действия или логической операции для  решения нестандартной задачи;

умения записывать ход решения и ответ задачи;

умения проводить дополнительную работу над задачей;

умение отбирать полезную информацию, содержащуюся в самой задаче, в  процессе её решения, систематизировать  эту информацию, соотнося с уже  имеющимися знаниями.

Сформированность у учащихся этих умений обеспечивает их продуктивную работу в ходе решения нестандартных задач и тем самым влияет на развитие уровня математического мышления.

«Уровень мышления – это сложное  понятие, включающее определённый уровень  общности, абстракции и строгости обоснования и изучаемого материала, определённые логические структуры».

А. А. Столяр выделил уровни математического  мышления.

1 уровень. Число неотделимо от  множества конкретных предметов,  которое оно характеризует, а  операции проводятся непосредственно  над множествами предметов.

2 уровень. Числа определены от  конкретных объектов, которые они характеризуют; при этом оперируют с числами, записанными в определённой системе счисления, а свойства операций устанавливаются индуктивно.

3 уровень. Переход от конкретных  чисел, выражаемых цифрами, к  абстрактным буквенным выражениям. Осуществляется «локальное» логическое упорядочение свойств чисел и операций.

4 уровень. Выясняется, возможность  дедуктивного построения всей  математики.

5 уровень. Отвлекаются от конкретной  природы объектов исчисления, от  конкретного смысла операций  и строят математику как абстрактную дедуктивную систему.

Раньше считалось, что учащимся начальных классов доступны только два первых уровня развития математического  мышления. Но современные исследования показали, что «дети этого возраста обладают значительно более широкими возможностями в усвоении знаний, нежели это предполагалось ранее, что у них можно сформировать более высокий уровень абстракции и обобщения, чем тот, на который ориентировалось традиционное преподавание»4.

Следовательно, традиционные формы  обучения не в состоянии поднять математическое мышление младших школьников на более высокий уровень. Как же решает эту проблему нетрадиционное обучение? Какие свойства математического мышления развивает решение нестандартных задач?

Во-первых, развивается гибкость мышления. Ученик учится ориентироваться в новых условиях, перестраивать систему усвоенных знаний. Например, необходима гибкость мышления при решении следующей задачи: «В комнате четыре угла. В каждом углу сидит кошка. Напротив каждой кошки по три кошки. На хвосте каждой кошки по одной кошке. Сколько же всего кошек в комнате?».

Ученик, который мыслит косно и  шаблонно, будет вычислять так: 4 кошки в углах, по 3 кошки против каждой – это ещё 12 кошек, да на хвосте каждой кошки по кошке, значит, ещё 16 кошек. Всего 32 кошки. Выходит, что пока мысль движется в привычной колее, решение будет неправильным.

Влияют нестандартные задачи и  на глубину мышления, то есть на умение выделять существенное в задаче, её скрытые особенности.

Чтобы решить следующую задачу: Дедушка Коли празднует каждый свой день рождения. В 1988 году он отпраздновал 17-й раз день своего рождения. Когда родился дедушка Коли? – нужно догадаться, что дедушка родился 29 февраля високосного года и только потом выполнять вычисления.

В ходе решения нестандартных задач формируется рациональность мышления, потому что само условие нестандартной задачи заставляет искать оптимально простое решение. Вот подобная задача: На сковороде помещается 2 кусочка хлеба. На поджаривание кусочка с одной стороны требуется 1 минута. Как поджарить за 3 минуты три кусочка хлеба с обеих сторон?

Нестандартные задачи развивают пространственное мышление, которое выражается в способности  воссоздавать в уме пространственные образы объектов и выполнять над  ними операции. Пространственное мышление проявляется при решении задач типа: Сверху на кромке круглого торта поставили 5 точек из крема на одинаковом расстоянии друг от друга. Через все пары точек сделали разрезы. Сколько всего получилось кусочков торта?

Логическое мышление, а это умение выводить следствия из посылок, которое крайне необходимо для успешного овладения математикой, активизируется при решении логических задач. Вот одна из них: Говорят, что Тортила отдала золотой ключик Буратино не так просто, как рассказал А. Н. Толстой, а совсем иначе. Она вынесла три коробочки: красную, синюю и зелёную. На красной коробочке было написано: «Здесь лежит золотой ключик», а на синей – «Зелёная коробочка пуста», а на зелёной – «Здесь сидит змея».

Тортилла прочла надписи и сказала: «Действительно в одной коробочке лежит золотой ключик, в другой – змея, а третья – пуста, но все надписи неверны. Если отгадаешь, в какой коробочке лежит золотой ключик, он твой». Где лежит золотой ключик?

Информация о работе Методика использования дидактических игр на уроках математики в начальной школе