Контрольная работа по «Товароведение продовольственных товаров»

Автор работы: Пользователь скрыл имя, 16 Мая 2012 в 19:35, контрольная работа

Краткое описание

Рынок мясных продуктов является одним из крупнейших рынков продовольственных товаров. Он имеет весьма устойчивые традиции, его состояние оказывает существенное влияние на другие рынки продуктов питания. За долгие годы сформировалась определенная система производства и распределения подобных продуктов. Мясная промышленность всегда относилась к одной из важнейших, показатели ее развития составляли предмет пристального интереса со стороны государства. Мясные продукты в виде тех или иных товарных групп являлись частью государственного стратегического запаса. Несмотря на дефицит мясных продуктов в течение ряда лет, их значение для обычного потребительского рациона весьма велико

Содержание

Глава 1. Мясо и мясные продукты. 3
1.1. Введение 3
1.2. Классификация мясных продуктов 4
1.3. Товароведная характеристика копчено-вареной продукцией. 15
Глава 2. Свежие плоды и овощи. 32
2.1. Химический состав и пищевая ценность свежих плодов и овощей 32
2.2. Классификация свежих плодов и овощей. Характеристика отдельных видов 32
2.3. Транспортирование и приемка свежих плодов и овощей 33
2.4. Процессы, подходящие при хранении свежих плодов и овощей 34
2.4. Факторы, влияющие на сохранность пищевых продуктов 34
2.5. Пищевая ценность плодов и овощей 35
Заключение 36
Глава 3. Характеристика белков. 37
3.1. Введение 37
3.2. Исследование белков 37
3.3. Классификация белков. 40
3.4. Состав и строение 42
3.5. Химические и физические свойства 47
3.6. Значение белков 51
Список литературы 54

Вложенные файлы: 1 файл

товароведение продтоваров.docx

— 2.03 Мб (Скачать файл)

К началу XIX столетия появляются первые работы по химическому  изучению белков. Уже в 1803 г. Дж. Дальтон  дает первые формулы белков - альбумина  и желатина - как веществ, содержащих азот. В 1810 г. Ж. Гей-Люссак проводит химические анализы белков - фибрина крови, казеина  и отмечает сходство их элементного  состава. Решающее значение для понимания  химической природы белков имело  выделение при их гидролизе аминокислот. Вероятно, первым это сделал А. Браконно в 1820 г., когда, действуя на белки серной кислотой, при кипячении он получил «клеевой сахар», или глицин, при гидролизе фибрина из мяса - лейцин и при разложении шерсти - также лейцин и смесь других продуктов гидролиза. Первой открытой аминокислотой был, видимо, аспарагин, выделенный Л. Вокленом из сока спаржи Asparagus (1806). В это же время Ж. Пруст получил лейцин при разложении сыра и творога. Затем из продуктов гидролиза белка были выделены многие другие аминокислоты.

Первая концепция  строения белков принадлежит голландскому химику Г. Мульдеру (1836). Основываясь на теории радикалов, он сформулировал понятие о минимальной структурной единице, входящей в состав всех белков. Эту единицу, которой приписывался состав 2C8H12N+ 50,  Мульдер назвал протеином (Рг), а свою концепцию - теорией протеина.Позднее состав протеина был уточнен – C40H62N10O12; дополнительно к протеинным единицам некоторые белки содержали серу и фосфор. Формула белков, предложенная Мульдером в 1838 г., выглядела так:

белок сыворотки крови 10Pr S2P

белок куриных яиц 10Pr SP

фибрин 10Pr SP

казеин 10Pr S

клейковина растений 10Pr S2

кристаллин (из хрусталика глаза) 15Рг

Работы Г. Мульдера способствовали широкому распространению взглядов о единстве всех белков, их фундаментальном значении в мире живой природы.

В ходе проверки «теории протеина» были резко  расширены химические исследования белков, и в этом приняли участие  выдающиеся химики того времени Ю. Либих  и Ж. Дюма. Ю. Либих, поддерживавший в  принципе идею протеиновой единицы, уточнил формулу протеина C48H72N12O14, Ж. Дюма предложил свой вариант C48H74 12О15  -, однако Г. Мульдер отстаивал правильность составленной им формулы. Его поддерживал И. Берцелиус, изложивший теорию протеина в качестве единственной теории строения белка в знаменитом учебнике химии (1840), что означало полное признание и торжество концепции Г. Мульдера.

Однако вскоре наступают трудные времена для  теории протеина. В 1846 г. Н. Э. Лясковский, работавший в лаборатории Ю. Либиха, доказал неточность многих приведенных Г. Мульдером анализов. Свои сомнения в правильности теории публично высказал Ю. Либих, он планировал начать широкие исследования структуры белков и даже изучил продукты распада белковых веществ. Понимая весомость аргументов оппонентов, Г. Мульдер пытался корректировать формулу протеина (C36H50N8O10), но в конце концов уступил под натиском новых фактов и открытий. Теория протеина стала достоянием истории, однако ее значение непреходяще, ибо она стимулировала химические исследования белков, сделала белки одним из главных объектов бурно развивающейся химии природных веществ.

Открытие аминокислот в составе  белков

Аминокислота

Год

Источник

Кто впервые выделил

Глицин

1820

Желатина

А. Браконно

Лейцин

1820

Мышечные волокна

А, Браконно

 

1839

Фибрин шерсти

Г. Мульдер

Тирозин

1848

Казеин

Ф. Бопп

Серии

1865

Шелк

Э. Крамер

Глутаминовая кислота

1866

Растительные белки

Г. Риттхаузен

Аспарагиновая кислота

1868

Конглутин, легумин (ростки спаржи)

Г. Риттхаузен

Фенилаланин

1881

Ростки люпина

Э. Шульце, И, Барбьери

Аланин

1888

Фиброин шелка

Т. Вейль

Лизин

1859

Казеин

Э. Дрексель

Аргинин

1895

Вещество рога

С. Гедин

Гистидин

1896

Стурин,гистоны

А. Кессель

Цистин

1899

Вещество рога

К. Мёрнер

Валин

1901

Казеин

Э. Фишер

Пролин

1901

Казеин

Э. Фишер

Гидроксипролин

1902

Желатина

Э. Фишер

Триптофан

1902

Казеин

Ф.Гопкинс, Д, Кол

Изолейцин

1904

Фибрин

Ф.Эрлих

Метионин

1922

Казеин

Д. Мёллер

Треонин

1925

Белки овса

С. Шрайвер и др.

Гидроксилизин

1925

Белки рыб

С. Шрайвер и др.


Для формирования современных представлений о  структуре белка существенное значение имели работы по расщеплению белковых веществ протеолитическими ферментами. Одним из первых их использует Г. Мейснер. В 1850 г. К. Леман предлагает называть пептонами продукты разложения белков пепсином. Изучая этот процесс, Ф. Хоппе-Зайлер и Ш. Вюрц в 70-х годах прошлого столетия пришли к важному выводу, что пептоны образуются в результате гидролиза белков ферментом. Они были весьма близки к правильному толкованию таких экспериментов с позиций структурной химии, но, к сожалению, последнего шага на пути к теории строения белка сделать не сумели. Очень близок к истине был и А. Я. Данилевский, который  в своей работе  "Исследование состава, физического и химического строения продуктов распадения белковых веществ и генетических отношений между различными их видами" справедливо утверждал, что белки построены из аминокислот и имеют полимерную природу.

Дальнейшие  структурные исследования белка, а  также основополагающие работы Т. Курциуса по синтезу пептидов привели в конце концов к формулированию  пептидной гипотезы, согласно которой белки построены из аминокислот, соединенных пептидными связями -СО-NH-. В 1902 Э. Фишер   создал метод анализа и разделения аминокислот, основанный на переводе их в сложные эфиры, которые можно было подвергать фракционной перегонке, не опасаясь разложения. С помощью этого метода провел качественное и количественное определение продуктов расщепления белков и открыл аминокислоты валин, пролин и гидроксипролин. Позднее из аминокислот он получил продукты их конденсации, названные полипептидами. Последовательно синтезировал ди-, три- и т.д. пептиды, всего около 125. Один из них, состоящий из 18 аминокислот, долгое время оставался наиболее сложным из всех синтезированных органических соединений с известной структурой. Фишер установил механизм соединения аминокислот в линейные цепочки через образование пептидной связи (и ввел этот термин), разработал методы синтеза D- и L-аминокислот.                                   Пептидная теория  получила полное подтверждение в дальнейших исследованиях. Изучение строения белков было поставлено на прочную научную основу. 

В 1934 г.  Лайнус Полинг  совместно с А.E. Мирски   сформулировал теорию строения и функции белка. В 1936 г.  он положил начало изучению атомной и молекулярной структуры белков и аминокислот (мономеров, из которых состоят белки) с применением рентгеновской кристаллографии.В 1942 г. Полингу  и его коллегам, получив первые искусственные антитела, удалось изменить химическую структуру некоторых содержащихся в крови белков, известных как глобулины.В 1951 г. П. и Р.Б. Кори опубликовали первое законченное описание молекулярной структуры белков. Это был результат исследований, длившихся долгих 14 лет. Применяя методы рентгеновской кристаллографии для анализа белков в волосах, шерсти, мускулах, ногтях и других биологических тканях, они обнаружили, что цепи аминокислот в белке закручены одна вокруг другой таким образом, что образуют спираль. Это описание трехмерной структуры белков ознаменовало крупный прогресс в биохимии.

3.3. Классификация белков.

Из-за относительно больших размеров белковых молекул , сложности их строения и отсутствия достаточно точных  данных о структуре большинства белков  еще нет рациональной химической классификации белков. Существующая классификация в значительной мере условна и построена главным образом на основании физико-химических свойств белков, источников их получения , биологической активности и других, нередко случайных, признаков. Так, по физико-химическим свойствам белки делят на фибриллярные и глобулярные , на гидрофильные(растворимые) и гидрофобные (нерастворимые) и т.п. По источнику получения белки подразделяют на животные, растительные и бактериальные; на белки мышечные, нервной ткани, кровяной сыворотки и т.п.; по биологической активности – на белки-ферменты, белки-гормоны, структурные белки, сократительные белки, антитела и т.д. Следует, однако, иметь в виду, что из-за несовершенства самой классификации, а также вследствие исключительного многообразия белков многие из отдельных белков не могут быть отнесены ни к одной из описываемых здесь групп.  

 Все белки  принято делить на простые  белки ,или протеины,  и сложные белки , или протеиды (комплексы белков с небелковыми соединениями).Простые белки являются полимерами только аминокислот; сложные, помимо остатков аминокислот, содержат также небелковые, так называемые простетические группы.  

Протеины представляют собой простые белки, состоящие  только из остатков аминокислот. Они  широко распространены в животном и  растительном мире.

Гистоны

Имеют сравнительно низкую молекулярную массу (12-13 тыс.), с  преобладанием щелочных свойств. Локализованы в основном в ядрах клеток. Растворимы в слабых кислотах, осаждаются аммиаком и спиртом. Имеют только третичную структуру. В естественных условиях прочно связаны с ДНК и входят в состав нуклеопротеидов. Основная функция — регуляция передачи генетической информации с ДНК и РНК (возможна блокировка передачи). 

Протамины

Самая низкая молекулярная масса (до 12 тыс.). Проявляет  выраженные основные свойства. Хорошо растворимы в воде и слабых кислотах.  Содержатся в половых клетках и составляют основную массу белка хроматина. Как и гистоны образуют комплекс с ДНК, функция   -   придают ДНК химическую устойчивость. 

Глютелины

Растительные  белки, содержащиеся в клейковине семян  злаковых и некоторых других, в  зеленых частях растений. Нерастворимые в воде, растворах солей и этанола, но хорошо растворимы в слабых растворах щелочей. Содержат все незаменимые аминокислоты, являются полноценными продуктами питания.  

Проламины

Растительные  белки. Содержатся в клейковине злаковых растений. Растворимы только в 70%-м спирте (это объясняется высоким содержанием  пролина и неполярных аминокислот). 

Протеиноиды

Белки опорных  тканей (кость, хрящ, связки, сухожилия, ногти, волосы). Нерастворимые или  трудно растворимые в воде, солевых  и водно-спиртовых смесях белки  с высоким содержанием серы. К  протеиноидам относятся кератин, коллаген, фиброин. 

Альбумины

Невысокой молекулярной массой (15-17 тыс.). Характерны кислые свойства. Растворимы в воде, и слабых солевых растворах. Осаждаются нейтральными солями при 100%-м насыщении. Участвуют в поддержании осмотического давления крови, транспортируют с кровью различные вещества. Содержатся в сыворотке крови, молоке, яичном белке. 

Глобулины

Молекулярная  масса до 100 тыс.. В воде нерастворимы, но растворимы в слабых солевых растворах и осаждаются в менее концентрированных растворах (уже при 50%-м насыщении). Содержатся в семенах растений, особенно в бобовых и масленичных; в плазме крови и в некоторых других биологических жидкостях. Выполняющие функцию иммунной защиты, обеспечивают устойчивость организма к вирусным инфекционным заболеваниям.

Сложные белки  делят на ряд классов в зависимости  от характера простетической группы.  

 

 

 Фосфопротеины

Имеют в качестве небелкового компонента фосфорную  кислоту. Представителями данных белков являются казеиноген молока, вителлин (белок желтков яиц). Такая локализация  фосфопротеидов свидетельствует о важном их значении для развивающегося организма. У взрослых форм эти белки присутствуют в костной и нервной тканях. 

Липопротеины

Сложные белки, простетическая группа которых образована липидами. По строению это небольшого размера (150-200 нм) сферические частицы, наружная оболочка которых образована белками (что позволяет им передвигаться по крови), а внутренняя часть — липидами и их производными. Основная функция липопротеинов — транспорт по крови липидов. В зависимости от количества белка и липидов, липопротеиды подразделяются на хиломикроны, липопротеиды низкой плотности (ЛПНП) и высокой плотности (ЛПВП), которые иногда обозначаются как a- и b-липопротеиды. 

Металлопротеины

Содержат  катионы одного или нескольких металлов. Наиболее часто это — железо, медь, цинк, молибден, реже марганец, никель. Белковый компонент связан с металлом координационной связью. 

Гликопротеины

Простетическая группа представлена углеводами и их производными. Исходя из химического строения углеводного компонента, выделяют 2 группы:

Истинные — в качестве углеводного компонента наиболее часто встречаются моносахариды. Протеогликаны — построены из очень большого числа повторяющихся единиц, имеющих дисахаридный характер (гиалуроновая кислота, гипарин, хондроитин, каротинсульфаты).

Функции: структурно-механическую (имеются в коже, хряще, сухожилиях); каталитическую (ферменты); защитную; участие  в регуляции клеточного деления.  

Хромопротеины

Выполняют ряд  функций: участие в процессе фотосинтеза  и окислительно-восстановительных реакциях, транспорт С и СО2. Являются сложными белками, простетическая группа которых представлена окрашенными соединениями.  

Нуклеопротеины

Роль протеистической группы выполняет ДНК или РНК. Белковая часть представлена в основном гистонами и протаминами. Такие комплексы ДНК с протаминами обнаружены в сперматозоидах, а с гистонами — в соматических клетках, где молекула ДНК “намотана” вокруг молекул белка-гистона. Нуклепротеинами по своей природе являются вне клетки вирусы — это комплексы вирусной нуклеиновой кислоты и белковой оболочки — капсида.

3.4. Состав и строение

 

  

Пептидная связь

Белки представляют собой нерегулярные полимеры, построенные  из остатков a-аминокислот, общую формулу  которых в водном растворе при  значениях pH близких к нейтральным можно записать как NH3+CHRCOO– . Остатки аминокислот в белках соединены амидной связью между a-амино- и a-карбоксильными группами. Связь между двумя a-аминокислотными остатками обычно называется пептидной связью, а полимеры, построенные из остатков a-аминокислот, соединенных пептидными связями, называют полипептидами. Белок как биологически значимая структура может представлять собой как один полипептид, так и несколько полипептидов, образующих в результате нековалентных взаимодействий единый комплекс.

Информация о работе Контрольная работа по «Товароведение продовольственных товаров»