Автор работы: Пользователь скрыл имя, 30 Октября 2013 в 09:56, дипломная работа
Цель: разработка дидактических средств развития пространственных представлений младшего школьника.
Для достижения цели данного исследования нами были
поставлены следующие задачи:
Проанализировать литературу по проблеме исследования;
выявить сущность, особенности пространственных представлений младших школьников;
1.2 Развитие пространственных представлений учащихся
в курсе математики начальной школы
Пространственные
представления и
Прежде всего, следует уточнить термин «пространственное мышление», его содержательную и операциональную стороны. Базой для развития пространственного мышления, как уже сказано, являются пространственные представления, которые отражают соотношения и свойства реальных предметов, то есть свойства трехмерного видимого или воспринимаемого пространства.
Пространственные представления – это деятельность, включающая в себя определение формы, величины, местоположения и перемещения предметов относительно друг друга и собственного тела, относительно окружающих предметов.[46,с.92]
Содержанием пространственного мышления является оперирование пространственными образами в видимом или воображаемом пространстве (на плоскости). Этим пространственное мышление отличается от других форм мышления, где выделение пространственных характеристик не является центральным моментом.
По мнению И. С. Якиманской пространственное мышление структурно представлено двумя видами деятельности: созданием пространственного образа и преобразованием уже созданного образа в соответствии с поставленной задачей. При создании любого образа, в том числе и пространственного, мысленному преобразованию подвергается наглядная основа, на базе которой он возникает. В качестве реальной основы может выступать и реальный предмет, и его графическая (рисунок, чертеж, график и т.д.) или знаковая (математические или иные символы) модель. В любом случае при создании образов происходит перекодирование, сохраняющее не столько внешний вид, сколько контур объекта, его структуру и соотношение частей.
При оперировании образом мысленно видоизменяется уже созданный образ, нередко в условиях полного отвлечения от первоначальной формы. Преобразование пространственных образов может осуществляться одновременно в нескольких направлениях или в каком-то одном, но при этом снова происходит отвлечение от первоначального образа (образов) и уже без сохранения либо контуров, либо структуры, либо соотношения частей.
В зависимости
от сложности выполняемых
1-й тип – преобразуется пространственное положение и не затрагивается структура образа (это различные перемещения);
2-й тип – преобразуется структура образа путем различных трансформаций (наложения, совмещения, перегруппировка составных частей, добавление или удаление элементов);
3-й тип – исходный образ преобразуется длительно и неоднократно, что приводит к изменению и структуры, и пространственного положения.
Эта классификация достаточно условна, так как операция, относящаяся ко 2-му типу, может одновременно привести к изменению образа в пространстве (а это уже 3-й тип) и тому подобное. [62,c.126]
Еще до
школы дети накапливают
Слово, как ориентир, позволяет из совокупности признаков объекта выделить единичный: либо форму, либо размер, либо положение относительно других объектов. Однако ребенок затрудняется сам охарактеризовать тот или иной признак. При дифференциации пространственных признаков некоторые сложности возникают у детей младшего школьного возраста также с использованием понятия «размер», которое формируется у них, как правило, в основном при изучении величин: длины, площади, объема. В младшем школьном возрасте, особенно на начальном этапе обучения, основным показателем сформированности пространственных представлений является узнавание и дифференцирование пространственных признаков на основе перцептивной деятельности (деятельности по восприятию объекта). Оперативной единицей пространственного восприятия объекта является образ, который характеризуется не только и не столько пространственными признаками (форма и размер), но в большей степени пространственными отношениями, определяющими направление (вперед – назад, вверх – вниз), расстояние (далеко – близко), местоположение (высокий – низкий, короткий – длинный) и так далее.[62,c.34]
Одна из психологических особенностей детей младшего школьного возраста - преобладание наглядно-образного мышления и именно на первых этапах обучения математике используется образ, как основная оперативная единица пространственных представлений младших школьников. Однако большие возможности для дальнейшего развития этого вида мышления, а также для наглядно-действенного мышления дает такая работа с геометрическим материалом на уроках математики, когда образ, в котором представлены пространственные признаки объекта, и слово соотносятся ребенком взаимно однозначно. В этом случае сформированность пространственных представлений дает ребенку возможность оперировать ими не только на уровне узнавания и дифференциации объекта по пространственным признакам, но главное – на уровне мысленного воспроизведения образа объекта и изменения его положения в пространстве размещать и ориентировать объект в какой-либо системе отсчета, то есть понимать его положение среди совокупности других объектов.
Именно такой подход к изучению геометрического материала делает его эффективным для развития детей - считает Л. В. Занков. Формирование пространственных представлений у младших школьников способствует развитию восприятия, памяти, внимания, выработке у младших школьников математических понятий на основе содержательного обобщения, которое означает, что ребенок движется в учебном материале от частного к общему, от конкретного к абстрактному. Переход от наглядно-образного к наглядно-действенному мышлению требует сложной аналитико-синтетической работы, выделения деталей, сопоставления их друг с другом, что немыслимо без наличия у ребенка развитых пространственных представлений и пространственного воображения. В этом процессе большое значение принадлежит и речи, которая помогает назвать признак, сопоставить признаки. Только на основе развития наглядно-действенного и наглядно-образного мышления начинает формироваться в этом возрасте формально-логическое мышление, которое в совокупности с наглядно-образным и наглядно-действенным мышлением является основой умственного развития младшего школьника. При этом с помощью каждого из них, у ребенка лучше формируются те или иные качества ума. [21,c.8]
В структуре пространственных представлений можно выделить четыре основных уровня, каждый из которых, в свою очередь, состоит из нескольких подуровней.
В основе выделения
уровней в структуре
Н.Семаго предлагает следующую структуру:
Первый уровень. Пространственные представления о собственном теле.
Второй уровень. Пространственные представления о взаимоотношении внешних объектов и тела (по отношению к собственному телу)
Развитие
пространственных представлений подчиняется
одному из главных законов развития
— закону основной оси (8): сначала
формируются представления
Итогом развития ребенка на этом этапе становится целостная картина мира в восприятии пространственных взаимоотношений между объектами и собственным телом (структурно-топологические представления).
Третий уровень. Уровень вербализации пространственных представлений.
Проявление пространственных представлений на вербальном уровне соотносится с законами развития движения в онтогенезе (закон основной оси). Предлоги, обозначающие представления об относительном расположении объектов как по отношению к телу, так и по отношению друг к другу (в, над, под, за, перед и т.п.) появляются в речи ребенка позже, чем такие слова, как верх, низ, близко, далеко и т.п.
Четвертый уровень. Лингвистические представления (пространство языка). Этот уровень является наиболее сложным и поздно формирующимся. Он уходит корнями в пространственные представления «низшего» порядка, формируется непосредственно как речевая деятельность, являясь в то же время одной из основных составляющих стиля мышления и собственно когнитивного развития ребенка. [52,c.12]
1.3. Анализ учебников математики с точки зрения развития пространственных представлений младшего школьника
Программа по математике в начальных классах является органической частью курса математики средней школы. В настоящее время существует несколько программ обучения математике в начальных классах. Самой распространенной является программа по математике для четырехлетней начальной школы. Эта программа предполагает, что изучение соответствующих вопросов будет проводиться в течение четырех лет.
В программе заложена возможность реализации межпредметных связей между математикой, трудовой деятельностью, развитием речи. Программа предусматривает расширение математических понятий на конкретном жизненном материале, что дает возможность показать детям, что все те понятия и правила ,с которыми они знакомятся на уроках ,служат практике, понимания связи между наукой и практикой. Программа по математике позволит вооружить детей умениями и навыками, необходимыми для самостоятельного решения новых учебных и практических задач, воспитания у них самостоятельности и инициативы.[37,c.12]
Параллельно традиционной программе существует интегрированный курс «Математика и конструирование», авторами которого являются С.И.Волкова и О.Л.Пчелкина. Данный курс представляет собой объединение в одном предмете двух разноплановых по способу овладения ими предметов: математики, изучение которой носит теоретический характер и трудовое обучение: формирование умений и навыков, которое носит практический характер.
Наряду с курсом «Математика и конструирование» существует курс «математика с усилением линии развития познавательных способностей учащихся», авторы С.И.Волкова и Н.Н.Столярова. Этот курс характеризуется теми же базисными понятиями и их последовательностью, что и действующий в настоящее время курс математики в начальной школе. Одной из основных целей курса стало создание действенных условий для развития познавательных способностей и деятельности детей, их интеллекта и творческого начала, расширение их математического кругозора.
Среди программ, рассмотренных выше, существуют программы развивающего обучения. Программа развивающего обучения Л.В. Занкова является альтернативной системе обучения, которая действовала и действует в практике. Геометрический материал пронизывает все четыре курса начальной школы, т.е. он изучается во всех четырех классах по сравнению с традиционной системой.
Анализируя систему изучения геометрических понятий и отношений как в традиционной, так и в альтернативных системах обучения математике в начальной школе, можно придти к выводу о том, что геометрические знания рассматриваются как нечто второстепенное, не имеющее самостоятельной ценности и самостоятельного значения, дополнительное к арифметическим знаниям. При этом объем геометрических представлений младшего школьника, определенный программой начальной, является весьма небольшим и ограничивается только знакомством с плоскими геометрическими фигурами, не затрагивая даже отношений между ними на плоскости (не говоря уже о пространстве). Единственное отношение, изучаемое в начальной школе, - это отношение равенства (равные отрезки, равные стороны, равные площади), которые проверяются либо непосредственным наложением в 1-м классе или измерением во 2-м и 3-м классах, а равенство площадей – в основном вычислением в 3-м и 4-м классах. Иными словами, обучение геометрии в начальной школе сводится в основном к измерительной деятельности, что иллюстрирует связь понятий «длина» и «площадь» с понятием «натуральное число» и удовлетворяет в основном потребность в формировании практических измерительных навыков младших школьников. Однако такое обучение не решает проблемы развития геометрического мышления, которое является весьма значительным в развитии пространственного мышления в широком смысле. Этот вывод подтверждается материалами структурного анализа системы изучения элементов геометрии (и пространственной в том числе) четырех наиболее популярных в настоящее время систем обучения младших школьников математике – традиционных учебников по программам 1 – 3 и 1 – 4, а также альтернативных учебников И. И. Аргинской и Н. Б. Истоминой, проведенный кандидатом педагогических наук А. В. Белошистой. [7,c.67] Количественные данные этого анализа отражены в следующей таблице:
учебники |
класс |
Всего заданий в учебниках |
Всего геометрических заданий |
% геометрических заданий от |
Из них на измерение длин, периметра, площади |
% заданий на измерения от всех геометрических |
% заданий на «геометрию формы» от всех заданий учебника | |
Система 1 - 3 |
1-й |
783 |
8 |
1 |
6 |
47 |
0,2 | |
2-й |
1253 |
61 |
4,8 |
51 |
84 |
0,7 | ||
3-й |
1320 |
47 |
3,6 |
33 |
70 |
1,1 | ||
Система 1 - 4 |
1-й |
378 |
26 |
6,9 |
19 |
73 |
1,9 | |
2-й |
761 |
27 |
3,5 |
23 |
85 |
0,5 | ||
3-й |
1113 |
59 |
5,3 |
51 |
74 |
0,7 | ||
4-й |
1155 |
46 |
4,0 |
34 |
86 |
1,0 | ||
Учебники И.И.Аргинской |
1-й |
578 |
119 |
20,5 |
22 |
18,5 |
16,6 | |
2-й |
763 |
86 |
11,3 |
25 |
29,0 |
8,0 | ||
3-й |
745 |
88 |
12,0 |
34 |
38,6 |
7,4 | ||
Учебники Н.Б.Истоминой |
1-й |
532 |
77 |
14,0 |
30 |
39,0 |
8,5 | |
2-й |
595 |
67 |
11,0 |
41 |
61,0 |
4,3 | ||
3-й |
633 |
56 |
9,0 |
22 |
39,0 |
5,5 |