Элементы статистики, комбинаторики и теории вероятностей в основной школе

Автор работы: Пользователь скрыл имя, 02 Апреля 2014 в 09:05, курсовая работа

Краткое описание

Современная концепция школьного математического образования ориентирована, прежде всего, на учет индивидуальности ребенка, его интересов и склонностей. Этим определяются критерии отбора содержания, разработка и внедрение новых, интерактивных методик преподавания, изменения в требованиях к математической подготовке ученика. И с этой точки зрения, когда речь идет не только об обучении математике, но и формировании личности с помощью математики, необходимость развития у всех школьников вероятностной интуиции и статистического мышления становится насущной задачей. Причем речь сегодня идет об изучении вероятностно-статистического материала в обязательном основном школьном курсе «математике для всех» в рамках самостоятельной содержательно-методической линии на протяжении всех лет обучения.

Содержание

Глава 1.
§1 Анализ учебно-методической литературы по теме исследования
1. Инструктивные письма 6
2. Анализ статей из журналов «Математика в школе» 9
3. Анализ вероятностно-статистической линии
в учебной литературе 16
§2 О подготовке учителей к обучению школьников стохастике 27
§3 Некоторые выводы содержательно-методического характера по реализации стохастической линии в основной школе 32

Глава 2. Методика изучения стохастики в основной школе
§1. Методика реализации стохастической линии в 5 классе 38
§2. Методика реализации стохастической линии в 6 классе 49
§3. Методика реализации стохастической линии в 7 классе 59
§4. Методика реализации стохастической линии в 8 классе 67
§5. Методика реализации стохастической линии в 9 классе 72

Заключение 76
Библиография 77

Вложенные файлы: 1 файл

ИКТ 1.doc

— 425.50 Кб (Скачать файл)

По-моему мнению, рассматриваемые комбинаторные задачи, решаемые методом перебора возможных вариантов, взяты не совсем удачно. Для первого знакомства с задачами на перебор возможных вариантов лучше взять более простые задачи.  

Еще одним недостатком, на мой взгляд, является то, что авторами вводится лишь классическое определение вероятности и абсолютно не рассматривается понятие частоты. А более логично и целесообразно вводить классическое определение на основе частотного.

Некоторые учебные комплекты пополнились дополнительными учебными пособиями, содержащими материал по стохастике.

Макарычев Ю.Н., Миндюк Н.Г.   [14]

«Алгебра: элементы статистики и теории вероятностей».

Под редакцией Теляковского С.А.

Это учебное пособие предназначено для учащихся 7-9 классов, оно дополняет учебники:  Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. «Алгебра 7», «Алгебра 8», «Алгебра 9», под редакцией Теляковского С.А.

           Книга состоит из четырех параграфов. В каждом пункте содержатся теоретические сведения и соответствующие упражнения. В конце пункта приводятся упражнения для повторения. К каждому параграфу даются дополнительные упражнения более высокого уровня сложности по сравнению с основными упражнениями.

В 7 классе (§1) материал объединен в параграф «статистические характеристики», который знакомит с простейшими статистическими характеристиками (среднее арифметическое, мода, медиана, размах).  Упражнения к параграфу можно разделить на 2 группы. Первую группу составляют задания на отыскание рассматриваемых характеристик и истолкование их практического смысла. Ко второй группе относятся задания, которые требуют не только знания определений изучаемых статистических характеристик, но и умений проводить необходимые рассуждения, использовать ранее введенный алгебраический аппарат.

Материал, изучаемый в 8 классе (§2) также объединен в один параграф «Статистические исследования», где рассматриваются вопросы организации статистических исследований и наглядного представления статистической информации (таблицы частот). Сначала повторяются основные статистические характеристики. Вводятся новые понятия: интервальный ряд, сплошное и выборочное исследования, выборка, генеральная совокупность, репрезентативность. Знакомство с новыми видами наглядной интерпретации результатов статистических исследований – полигонами и гистограммами

Наибольший объем материала приходится на 9 класс. Здесь есть 2 параграфа.

 §3 «Элементы комбинаторики» содержит 4 пункта:

  1. Примеры комбинаторных задач. На простых примерах демонстрируется решение комбинаторных задач методом перебора возможных вариантов. Этот метод иллюстрируется с помощью построение дерева возможных вариантов. Рассматривается правило умножения.
  2. Перестановки. Вводится само понятие и формула подсчета перестановок.
  3. Размещения.  Понятие вводится на конкретном примере. Выводится формула числа размещений.
  4. Сочетания. Понятие и формула числа сочетаний.

§4 «Начальные сведения из теории вероятностей».

 Изложение материала начинается  с рассмотрения эксперимента, после  чего вводят понятие «случайное  событие» и «относительная частота  случайного события». Вводится статистическое  и классическое определение вероятности. Параграф  завершается пунктом «сложение и умножение вероятностей». Рассматриваются теоремы сложения и умножения вероятностей, вводятся связанные с ними понятия несовместные, противоположные, независимые события. Этот материал рассчитан на учащихся, проявляющих интерес и склонности к математике, и может быть использован для индивидуальной работы или на внеклассных занятиях с учащимися. 

В данном пособии некоторые элементы вводятся таким же образом, как и в учебном комплекте Дорофеева. Но материал сокращен, за исключением комбинаторики, которая содержит больше  и теории и практических упражнений. По моему мнению, комбинаторика и начальные сведения из теории вероятностей предлагается изучать слишком поздно. Как уже отмечалось выше, начинать обучать комбинаторике и формировать первые вероятностные представления лучше как можно раньше.

Методические рекомендации к данному учебнику даны в ряде статей Макарычева и Миндюка [15],[16],[17]. А также некоторые критические замечания по данному учебному пособию содержатся в статье Студенецкой и   Фадеевой [33], которая поможет не допустить ошибок при работе с данным учебником.

Ткачева М.В.  [36]

«Элементы статистики и вероятность».

Это учебное пособие для 7-9 классов и оно дополняет учебники Алимова Ш.А. «Алгебра 7,8,9».

1 Глава «Введение в комбинаторику» (7 класс) начинается с исторических  комбинаторных задач о магических  и латинских квадратах и другие. Затем рассматриваются пункт  различные комбинации из трех  элементов, где рассматриваются  сочетания, перестановки и размещения, но вводить сами термины не обязательно. Рассматривается таблица подсчета вариантов, которая подводит к правилу умножения. Также рассматриваются графы, но лишь как средство подсчета возможных вариантов. Эта глава имеет и дополнительные параграфы – перестановки и разбиение на две группы, выдвижение гипотез.

2 Глава «Случайные события» (8 класс).

Сначала рассматриваются события: достоверные, невозможные, случайные, совместные и несовместные, равновозможные. В следующем пункте вводится сразу классическое определение вероятности, после чего рассматривается решение вероятностных задач с помощью комбинаторики. Дальше как дополнительный пункт рассматривается геометрическая вероятность. Вводится понятие противоположных событий и их вероятность. Понятие относительной частоты и статистическое определение вероятности вводится уже в конце главы. И завершается дополнительным пунктом  - тактика игр.

3 глава «Случайные величины» (9 класс).

Вводятся понятия случайной величины – дискретной и непрерывной. Рассматриваются таблицы распределения значений случайной величины и его графическое представление (полигоны). Далее рассматриваются такие понятия как генеральная совокупность и выборка, мода, медиана, размах. А завершается глава дополнительными параграфами, в которых рассматриваются отклонение от среднего, дисперсия, среднее квадратичное отклонение и правило трех сигм

На мой взгляд, изложение некоторых вопросов в этом учебном пособии  не совсем удачно. Во-первых, классическое определение вероятности вводится до того как рассматривается понятие частоты и статистическое определение вероятности, что, по моему мнению, как я уже отмечала не совсем логично. Во-вторых, в главе о случайных величинах с простейшими статистическими характеристиками знакомят уже в последнюю очередь, а ведь именно их учащийся может использовать при анализе статистической информации. В-третьих, в учебнике вообще мало внимания уделено работе со статистическими данными.

В конце учебника содержатся краткие методические рекомендации для учителя. Также методические рекомендации к первой главе данного учебного пособия можно найти  в статье Ткачевой [38].

На данный момент одним из действующих учебников в школе является учебник Мордковича, к нему также имеются дополнительные главы для 7-9 классов:

Мордкович А.Г., Семенов П.В. [23]

«События, вероятности, статистическая обработка данных».

Первые два параграфа посвящены комбинаторике. Начинается с рассмотрения простых комбинаторных задач, рассматривается таблица возможных вариантов, которая показывает принцип правила умножения. Затем рассматриваются деревья возможных вариантов и перестановки. После теоретического материала идут упражнения по каждому из подпунктов.

Следующий параграф – выбор нескольких элементов, в котором рассматриваются сочетания. Сначала выводится формула для 2-ух элементов, затем для трех, а потом общая для п элементов.   

Третий параграф – случайные события и их вероятность. Вводится классическое определение вероятности.

Четвертый параграф посвящен статистике. Рассматривается группировка информации в виде таблиц. В этом разделе вводится много новых терминов, и авторы, оформили их в виде таблицы, где кроме определений идет еще и описание этих терминов. Дальше рассматривается таблица распределения  и ее графическое представление (многоугольник распределений), нормальное распределение. Числовые характеристики выборки (среднее арифметическое, мода, медиана). Следующий пункт – экспериментальные данные и вероятности событий, в котором говорится о связи между вероятностью и экспериментальными статистическими данными, после чего вводится определение статистической вероятности.

И завершает учебник параграф, содержащий материал по следующим вопросам: схема Бернулли (при рассмотрении двух возможных исходов)., вычисление вероятности с помощью функции φ, закон больших чисел.

В этом учебном пособии очень мало внимания уделено теории вероятностей. Этот учебник напоминает учебник Ткачевой. В нем также первым делом вводится классическое определение вероятности,   и уже намного позднее вводится статистическое определение, связанное с экспериментальными статистическими данными. Статистические характеристики вводятся для выборки, и после рассмотрения вопроса о распределении значений случайной величины. По комбинаторике  материал изложен более удачно. замечания по данному учебному пособию содержатся в статье Студенецкой и Фадеевой [32].

Тюрин Ю.Н., Макаров А.А. и др.   [39]

«Теория вероятностей и статистика».

Это пособие для учащихся 7-9 классов, в котором исследуемая линия реализуется в следующем порядке. Первые две главы посвящены  таблицам и диаграммам. Рассматриваются статистические данные в таблицах, идет обучение работе с таблицами (поиск информации, вычисления в таблицах, занесение результатов подсчетов и измерений в таблицы). Рассматриваются столбиковая, круговая и диаграмма рассеивания.

 В третьей главе кроме  основных статистических характеристик  вводятся также понятия: отклонения и дисперсии.

Четвертая глава – случайная изменчивость, содержит ряд примеров изменчивых величин (температура воздуха каждый день, рост или вес человека и т.п.). А затем в 5 главе переходим к изучению случайных событий и их вероятностей. Вероятность случайного события определяется здесь, как числовая мера его правдоподобия. После определения вероятности рассматривается частота и эксперименты с монетой и игральной костью. Дальше вероятностная линия продолжается, и рассматриваются элементарные события, их равновозможность, противоположные события, диаграммы Эйлера, объединения и пересечения событий, сложение и умножение вероятностей.

После этого идет блок комбинаторики, где рассматривается правило умножения, перестановки, сочетания, формулы числа перестановок и сочетаний, а затем с их помощью решаются задачи на вычисление вероятностей. В отдельных главах рассматриваются геометрические вероятности и испытания Бернулли (о двух возможных исходах).

Следующие несколько глав посвящены случайным величинам: примеры случайных величин, распределение вероятностей случайных величин, их числовые характеристики (математическое ожидание, дисперсия), случайные величины в статистике. Дается определение частоты, и теорема, утверждающая, что частота приближенно равна вероятности при большом числе опытов. 

Приложение включает в себя вопросы: формула Бинома-Ньютона, треугольник Паскаля, также имеется несколько самостоятельных и контрольных работ, по предложенному материалу.

Плюсом данного пособия является то, что оно одно из немногих содержит пункты, в которых рассматриваются таблицы и диаграммы. Этот пункт необходим, так как именно таблицы и диаграммы учат учащихся представлению и первоначальному анализу данных.

Не мало внимания уделено случайным величинам и вероятностям, но, я считаю, что  некоторые пункты можно рассматривать как дополнительные. А понятия дисперсии и математическое ожидание лучше перенести для изучения в старшие классы. Комбинаторные формулы в данном пособии рассматриваются, как средство для подсчета вероятности и даются после определения вероятности. Но основной целью изучения комбинаторики является развитие мышления, и ее нельзя рассматривать только как средство для подсчета вероятности.

Бунимович Е.А., Булычев В.А.   [3]

«Вероятность и статистика. 5-9 классы».

Начинается учебник с рассмотрения случайных событий и сравнения их вероятности (что вероятнее). Затем, опираясь на эксперимент, вводим понятие частоты (тут же рассматриваются таблицы частот и гистограммы). После чего идет пункт с названием «Куда стремятся частоты?», где вводим статистическое определение вероятности, а затем и классическое.

В пункте «вероятность и комбинаторика», рассматриваются правило умножения, правило вычитания и сочетания и их число. Все эти формулы используются для вычисления вероятности.  А в пункте «точка тоже бывает  случайной» речь идет о геометрическом определении вероятности.

В последнем пункте «сколько изюма в булке и сколько рыб в пруду?» рассматривается вопрос статистического оценивания и прогнозирования.

Я считаю, что в данном пособии удачным является введение понятия вероятности. Последовательность изложения вопросов по данной линии вполне логична.

Информация о работе Элементы статистики, комбинаторики и теории вероятностей в основной школе