Автор работы: Пользователь скрыл имя, 02 Апреля 2014 в 09:05, курсовая работа
Современная концепция школьного математического образования ориентирована, прежде всего, на учет индивидуальности ребенка, его интересов и склонностей. Этим определяются критерии отбора содержания, разработка и внедрение новых, интерактивных методик преподавания, изменения в требованиях к математической подготовке ученика. И с этой точки зрения, когда речь идет не только об обучении математике, но и формировании личности с помощью математики, необходимость развития у всех школьников вероятностной интуиции и статистического мышления становится насущной задачей. Причем речь сегодня идет об изучении вероятностно-статистического материала в обязательном основном школьном курсе «математике для всех» в рамках самостоятельной содержательно-методической линии на протяжении всех лет обучения.
Глава 1.
§1 Анализ учебно-методической литературы по теме исследования
1. Инструктивные письма 6
2. Анализ статей из журналов «Математика в школе» 9
3. Анализ вероятностно-статистической линии
в учебной литературе 16
§2 О подготовке учителей к обучению школьников стохастике 27
§3 Некоторые выводы содержательно-методического характера по реализации стохастической линии в основной школе 32
Глава 2. Методика изучения стохастики в основной школе
§1. Методика реализации стохастической линии в 5 классе 38
§2. Методика реализации стохастической линии в 6 классе 49
§3. Методика реализации стохастической линии в 7 классе 59
§4. Методика реализации стохастической линии в 8 классе 67
§5. Методика реализации стохастической линии в 9 классе 72
Заключение 76
Библиография 77
Последний пункт имеет практическое
значение, так как показывает практическую
пользу из подсчета вероятности. Содержит ряд интересных задач,
непосредственно связанных с реальной
жизнью.
§2 О подготовке учителей к обучению школьников стохастике.
Анализ учебно-методической литературы по теме исследования показывает, что введение вероятностно-статистического материала в базовый школьный курс математики породило немало проблем. К его появлению в школьном курсе оказались не готовы буквально все – от учителей до авторов школьных учебников.
Обладая одной из наиболее известных и признанных во всем мире академических школ теории вероятностей, мы до сих пор не имеем ни общей концепции преподавания этого раздела математики в школе, ни достаточного количества учебных пособий для школьников, содержащих соответствующий материал.
Остро встают проблемы методической готовности учителей к успешной реализации этой линии. Школьников нельзя ориентировать на вузовские варианты построения курса теории вероятностей. Вузовский материал должен быть переосмыслен и перенесен в школу. Учитель обязан владеть специфической методикой, направленной на развитие особого типа мышления и формирование особых, недетерминированных представлений у учащихся.
Курс теории вероятностей и математической статистики традиционно присутствовал в программах всех математических факультетов университетов и педагогических вузов, входил в обязательном порядке в подготовку инженеров, экономистов и т.д.
Если в высшей школе основной акцент делается на изучение математического аппарата для исследования вероятностных моделей, то в школе учащихся, прежде всего, необходимо ознакомить с процессом построения модели, учить их анализировать, проверять адекватность построенной модели реальным ситуациям, развивать вероятностную интуицию. [11]
Вопрос о подготовке учителей рассмотрен в статье Селютина В.Д. [30]
Одно из главных отличий школьного изучения стохастики состоит в тесной связи отвлеченных понятий и структур с окружающим миром. Поэтому математическая деятельность школьников не должна ограничиваться изучением только готовых вероятностных моделей. Напротив, процессы построения и истолкования моделей рассматриваются как ведущие формы ученической деятельности. Учитель призван правильно направлять такую деятельность, а для этого он сам должен владеть методами формализации и интерпретации. Выполнение учащимися заданий, связанных с принятием решений в реальных (в нематематических) ситуациях, играет здесь очень важную роль и требует умелого управления со стороны учителя.
Преподаватель должен владеть особой методологией с использованием специфических стохастических умозаключений. Владение искусством стохастических рассуждений – непременное условие успешной деятельности учителя математики. Нужен взгляд на стохастику не только как на систему понятий, фактов и утверждений, а как на специфическую методологию, охватывающую вероятностные и статистические умозаключения в их взаимосвязи. Анализ тех ситуаций, где для решаемой проблемы не оказывается однозначного или определенного ответа, не должен вызывать растерянности учителя. Нужно быть гибко мыслящим человеком, лишенным догматической веры в абсолютную истинность чужих выводов.
Особенность стохастических умозаключений проявляются, прежде всего, в ходе интерпретаций результатов решения математической задачи, возникшей на базе статистической информации. По этой причине во многих случаях одну и ту же статистическую информацию разные люди могут трактовать по-разному. Примером может служить следующая ситуация:
Владелец одного частного предприятия уволил большую часть рабочих, а оставшимся снизил зарплату на 20% (табл. №1). После этого он заявил, что средний заработок рабочих на его предприятии повысился. Так ли это?
Таблица №1.
Заработок до увольнения |
Заработок после увольнения | |||
1000 р. |
400 р. |
800 р. |
320 р. | |
Число рабочих |
200 |
800 |
200 |
120 |
Если вычислить средние характеристики: моду, медиану и среднее арифметическое, то получим, что их значения после увольнения части рабочих будут больше, чем до увольнения. Но в данном случае, если внимательно посмотреть на таблицу, то можно заметить, что жизнь рабочих не улучшилась, а только ухудшилась, не говоря уже о тех, кто вообще потерял работу. Видимость повышения зарплаты создается из-за увольнения значительной части низкооплачиваемых рабочих. Здесь итоги решения математической задачи противоречат здравому смыслу. Математическая модель, как видно из данного примера, не всегда адекватна практической ситуации.
Выступая в качестве дирижера и помощника учащихся, учитель призван прививать им критическое отношение к статистическим выводам и обобщениям, умение правильно истолковать статистическую информацию, самостоятельно разоблачать различного рода фальсификации, кажущиеся на первый взгляд «правдоподобной» информацией.
Учитель должен глубоко понимать причины появления опасности принятия неправильных решений в ходе анализа явлений, происходящих под воздействием случая. Обманчивое впечатление, например, может возникать из-за неполноты статистической информации. Например, рассматривая сведения о числе женщин, занятых в промышленности и в системе образования, можно прийти к выводу, что женский труд преобладает в промышленности:
Где работают |
В промышленности |
В образовании |
Число женщин |
129 483 |
41 769 |
Однако мнение меняется, после того, как дополнительно становится известным, что в образовании работает 57 218 человек, а в промышленности – 264 251 человек. В результате получается, что число женщин составляет примерно 73% от всех работников образования, и только примерно 49% от всех работников занятых в промышленности.
К неправильным или противоречивым выводам может привести также неадекватный выбор критериев, по которым интерпретируются статистические данные. Здесь примером может служить следующая ситуация: каждая из двух фирм по изготовлению обуви послала в некоторую африканскую страну своего агента для выяснения возможности продажи своей продукции. Агент первой фирмы телеграфировал: «прекрасный рынок для обуви – здесь 90% жителей не носят ботинок». Агент второй фирмы сообщил: «Для обуви здесь нет рынка – 90% жителей не носят ботинок».
Специфика стохастической линии требует от учителя умений так организовать математическую деятельность школьников, чтобы изучение понятий и методов происходило в форме открытия новых инструментов познания окружающего мира. При обучении стохастике создается благоприятная почва для эвристической деятельности учащихся. У педагогов появляется возможность использования новых, непривычных для уроков математики, подходов к обучению. Учитель, определяя уровень усвоения учениками тех или иных стохастических умений, может столкнуться со следующей трудностью: при решении задач учащемуся чаще приходится опираться на свой здравый смысл, а не действовать строго по алгоритму, поэтому ответы разных учащихся на один и тот же вопрос могут звучать по-разному. В данном случае задачей учителя является оценка «права на ошибку» учащегося, поскольку сама такая оценка носит вероятностный характер.
Следует учитывать, что дети
с опережающими темпами общего
развития раньше начинают
Приступая к обучению школьников стохастике, учитель должен себе ясно представлять, чем обусловлена необходимость введения в школу новой содержательно-методической линии. Осознание учителем целей обучения стохастике в школе, видение их соотношений с общими целями обучения математике и места стохастики в ряду других тем, знание итоговых требований к стохастической подготовке учащихся составляют важнейший общезначимый компонент методической готовности учителя математики к реализации новой линии.
§3 Некоторые выводы содержательно-методического характера по реализации стохастической линии в основной школе.
На основе всего рассмотренного и изученного материал по предложенной теме, можно сделать некоторые выводы и дать рекомендации по реализации стохастической линии в школе.
Анализ учебной литературы по исследуемой теме показал, что разные авторы подошли к реализации нового содержания в учебниках по-разному. Я считаю, что более преемственен для школы учебник под редакцией Дорофеева [18,19,20,21,22], который, на мой взгляд, имеет ряд преимуществ.
Во-первых, материал включен непосредственно в сам учебник, и работа по всем направлениям ведется параллельно, каждая линия проходит через все классы. Материал, предложенный в учебном пособии, рассчитан на 5-9 классы. Это в свою очередь позволяет уже в 5-6 классах начать формировать вероятностные представления, что, по мнению психологов, считается удачным.
С самого начала ведется работа по анализу данных (сбор, представление и анализ информации). Работа с таблицами и диаграммами.
Авторами учебника в качестве упражнений предлагается провести ряд экспериментов, что необычно для уроков математики, и призвано вызвать у учащихся неподдельный интерес. И затем, опираясь на результаты проведенных опытов, учитель вводит понятие частоты, после чего вводит частотное определение вероятности.
В большинстве учебников комбинаторные формулы рассматривается лишь как средство для подсчета вероятности, это сказывается на содержании этого материала в учебниках, и места его изучения. Но комбинаторика ставит и другие цели: в первую очередь – это развитие мышления, и использование комбинаторных знаний для решения задач прикладного характера.
Реализация любой темы в школьном курсе сталкивается с рядом проблем. Одной из них является проблема содержания материала, что именно и в каких количествах изучать в школе. Так как школьный курс строго ограничен временными рамками, то приходится выбирать необходимый минимум, но чтоб он был достаточным, для достижения поставленных целей обучения по данной линии и математике вообще.
Опираясь на государственные стандарты образования, анализ учебной и методической литературы можно выделить следующие моменты о содержании и последовательности изложения материала по данной линии.
Во-первых, необходимо изучать этот материал на протяжении всего курса средней школы. Весь курс условно можно разбить на несколько этапов (5-6 классы (подготовительный); 7-8 классы; 9 класс), причем на каждом этапе формируются одни и те же виды деятельности, но на разных уровнях и различными средствами. На каждом этапе материал усложняется, дополняется, отрабатываются ранее усвоенные и формируются новые умения и навыки.
Важным элементом стохастической линии является работа с данными: сбор данных, обработка, представление, анализ, практические выводы. Всем этим занимается наука, которая называется статистика.
На первом (подготовительном) этапе обучения - это работа с таблицами и диаграммами. Необходимо обучать учащихся не только работе с уже готовыми данными, но и самостоятельно собирать информацию и представлять ее в различных формах. Ежедневно нам необходима разнообразная информация, которая может быть представлена в различной форме, и одним из самых распространенных способов представления информации являются таблицы. Учащиеся в своей жизни часто сталкиваются с различного рода таблицами – это расписание уроков, страница классного журнала, программа телепередач, турнирные таблицы и т.п.
Учащиеся должны уметь анализировать данные, используя таблицы и диаграммы. Это позволяет в дальнейшем при изучении статистики не останавливаться на обучении учащихся работе с табличными данными и позволяет сконцентрировать внимание именно на обучении учащихся делать статистические и практические выводы.
Можно показать практическую значимость таблиц, построенных по результатам опроса общественного мнения (в классной жизни такие таблицы могут быть использованы, например, для организации досуга).
Для представления различных данных также очень удобно использовать диаграммы. Диаграмма является очень наглядным способом представления информации и различных данных и позволяет легче анализировать полученные результаты.
Одним из направлений стохастической линии является теория вероятностей, где одной из важных задач на первом этапе является формирование понятия - вероятность случайного события.
Сначала необходимо познакомить учащихся с понятием случайное событие, сформировать у них представление о том, какое событие называется достоверным, какое невозможным и какие события называются равновероятными. Все эти понятия нужно вводить, опираясь на понятные примеры, и просить детей самих приводить такие примеры. Учитель должен все время фиксировать внимание учащихся на случайных явлениях в быту, в природе и технике.
Информация о работе Элементы статистики, комбинаторики и теории вероятностей в основной школе