Автор работы: Пользователь скрыл имя, 28 Декабря 2014 в 13:21, курсовая работа
Поверхностно-активные вещества (ПАВ) — химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения. Основной количественной характеристикой ПАВ является поверхностная активность — способность вещества снижать поверхностное натяжение на границе раздела фаз — это производная поверхностного натяжения по концентрации ПАВ при стремлении С к нулю. Однако, ПАВ имеет предел растворимости (так называемую критическую концентрацию мицеллообразования или ККМ), с достижением которого при добавлении ПАВ в раствор концентрация на границе раздела фаз остается постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразования или агрегация).
1.Введение……………………………………………………………………..3
2.ПАВ и ПИВ………………………………………………………………….5
3.Мицелла и её составляющие……………………………………………….18
3.Оптические свойства коллоидных растворов……………………………..42
4.Уавнение Рэлея……………………………………………………………...43
5.Ультромикроскопия………………………………………………………...46
6.Турбиждиметрия и нефелометрия…………………………………………49
7.Светорассеяние в растворах ВМС…………………………………………56
8.Основные уравнения и законы……………………………………………..58
9.Расчётное задание…………………………………………………………..63
10.Заключение………………………………………………………………...67
11.Список литературы………………………………………………………..71
Рис. 8. Для технических этоксилированных спиртов характерна более высокая температура инверсии фаз, чем для индивидуального ПАВ с той же средней степенью этоксилирования. Разница в ТИФ связана с распределением гидрофильных и гидрофобных фракций в масле и воде соответственно. Большая доля ПАВ переходит в масло, а не в воду.
1) Природа масла. Чем менее
полярно масло, тем выше ТИФ. Например,
у эток-силированного
2) Концентрация электролита
и тип соли. ТИФ понижается
при добавлении большинства
3) Добавки в масляной фазе. Добавки, приводящие к увеличению полярности масла, например жирные кислоты или спирты, заметно снижают ТИФ. Добавки, хорошо растворимые в воде, например этанол и изопропанол, оказывают на ТИФ противоположное влияние.
4) Соотношение объемов
масла и воды. Можно считать, что
точка инверсии фаз
Рис. 9. Влияние полярности масла, концентрации электролита и температуры на кривизну межфазной границы масло-вода.
Подбор эмульгатора методом определения ТИФ:
Межфазное натяжение на поверхности масло-вода минимально при температуре инверсии фаз. Эмульсии, образующиеся при этой температуре, тонкодисперсные, но неустойчивые по отношению к коалесценции. Пользуясь методом определения ТИФ, для эмульгирования выбирают такой эмульгатор, который имеет точку ТИФ примерно на 40 0C выше температуры хранения готовой эмульсии, полученной при одинаковых объемах жидких фаз и 5%-ном содержании НПАВ. Эмульгирование проводят при температуре на 2-4 0C ниже ТИФ, а затем эмульсию быстро охлаждают до температуры хранения, при которой коалесценция протекает с низкой скоростью. Эффективный способ охлаждения состоит в том, что эмульгирование проводят в относительно небольшом количеством воды, а затем добавляют холодную воду. Можно также получить эмульсию при температуре немного выше ТИФ, при этом образуется эмульсия «вода в масле». Затем добавляют холодную воду, что приводит к инверсии фаз с образованием эмульсии «масло в воде». Этот способ обычно используют при эмульгировании очень вязких масел, например алкидных и других смол, однако капли в эмульсиях при этом не такие маленькие, как при использовании метода ТИФ без инверсии фаз.
Различные типы неионных ПАВ как эмульгаторы:
Традиционно в качестве эмульгаторов использовали этоксилированные алкил-фенолы. Из-за пристального внимания к вопросам биоразлагаемости и токсичности в водной среде эти НПАВ были вытеснены этоксилированными спиртами с примерно такими же числами ГЛБ. Иногда такая замена не является адекватной, что можно объяснить различием структур гидрофобных частей НПАВ этих двух типов. Гидрофобный радикал в этоксилированных спиртах обычно представлен неразветвленными углеводородными цепями алифатических углеводородов, а этоксилированные алкилфенолы содержат объемный и сильно поляризующийся гидрофобный «хвост». Адсорбция поверхностно-активного вещества на межфазной границе определяется его молекулярной структурой. По сравнению с размером молекул ПАВ межфазную границу масло-вода на эмульсионной капле можно считать плоской. Следовательно, чтобы получить оптимальную упаковку молекул ПАВ на межфазной границе, которая контролирует устойчивость эмульсий, молекулы поверхностно-активного вещества должны иметь такую геометрию, чтобы размер полярной группы был приблизительно одинаковым с размером гидрофобного «хвоста». Другими словами, значение КПУ такого ПАВ должно быть близким к единице. Легко увидеть, например рассматривая молекулярные модели, что у линейных этоксилированных спиртов, обычно использующихся в качестве эмульгаторов при получении эмульсий «масло в воде», объем гидрофобного «хвоста» намного меньше объема полярной группы. У соответствующих этоксилированных алкилфенолов объем гидрофобных «хвостов» также меньше, чем объем полярной группы, но это различие не столь большое. Поэтому линейные этоксилированные жирные спирты хуже упаковываются на границах раздела фаз, чем этоксилированные алкилфенолы. Различие в упаковке молекул данных НПАВ на межфазных границах можно объяснить также тем, что движущая сила адсорбции таких этоксилированных спиртов меньше, чем для этоксилированных алкилфенолов. Этоксилированные спирты, молекулы которых содержат гидрофобные разветвленные фрагменты, характеризуются более сбалансированной геометрией, чем их линейные аналоги. Так называемые «спирты Гербе» — спирты с длинными боковыми цепями у второго атома углерода, являются перспективным сырьем для получения сбалансированных этоксилированных спиртов. Было установлено, что такие НПАВ потенциально могут заменить этоксилированные алкилфенолы в разнообразных практических целях. Спирты с боковыми метальными группами, получаемые в процессе «оксосинтеза», представляют другой тип разветвленных спиртов.
Рис. 10. Структуры нормальных этоксилированных спиртов и этоксилированного нонилфенола.
Еще одно различие между этоксилированными нонилфенолами и этоксили-рованными спиртами — это наличие шести р-электронов в гидрофобной части нонилфенолов, что влияет на взаимодействия между ПАВ и ненасыщенными компонентами масла. Известно, что фенолы способны выступать донорами электронов при образовании донорно-акцепторых комплексов, предоставляя р-электроны молекулам-акцепторам электронов. Это взаимодействие может быть достаточно сильным, хотя природа связи до конца не ясна. Разумно предположить, что при взаимодействии этоксилированных алкилфенолов с двойной связью молекул, находящихся в масляной фазе, образуются такие комплексы, чего не может быть в случае этоксилированных спиртов. Образование донорно-акцепторного комплекса с участием этоксилированного нонилфенола показано на рис. 11.Электронные эффекты не настолько вездесущи, как эффекты геометрической упаковки. Донорно-акцепторные комплексы могут возникать только в том случае, если масло содержит компоненты, способные выступать как акцепторы электронов. Такими компонентами могут быть олефины и ароматические соединения, особенно содержащие группы, способные оттягивать электроны. Множество пищевых эмульсий, как и многие технические эмульсии, содержат масла с ненасыщенными компонентами. Образование комплексов способствует усилению взаимодействия между эмульгатором и масляной фазой. В свою очередь это позволяет использовать поверхностно-активные вещества с немного более длинными полиоксиэтиленовыми цепями, чем обычно. Более длинные оксиэтиленовые цепи обеспечивают более высокую растворимость поверхностно-активного вещества в воде. Такие ПАВ, не дающие дополнительного вклада в гидрофобные взаимодействия неполярных радикалов с маслом, преимущественно находятся в водной фазе. Использование поверхностно-активных веществ с более длинными оксиэтиленовыми цепями выгодно, поскольку такие цепи обеспечивают сильное стерическое отталкивание между каплями, предотвращая их коалесценцию.
Рис. 11. Электронный донорно-акцепторный комплекс между этоксилированным нонилфенолом и ненасыщенной связью.
Правило Банкрофта и динамика адсорбции ПАВ:
Рис. 12 поясняет правило Банкрофта, предсказывающее тип образующейся эмульсии в присутствии конкретного ПАВ. При наложении сдвиговых напряжений на смесь масла и воды межфазная граница масло-вода расширяется с образованием «пальцев» воды в масле и масла в воде. Такая ситуация неустойчива. Если происходит разрыв «пальцев» масла, образуется эмульсия типа «масло в воде»; если, наоборот, происходит разрыв «пальцев» воды, образуется эмульсия «вода в масле». Для стабилизации новых образующихся капель, независимо от типа возникающей структуры, требуется определенное время для диффузии эмульгатора к межфазной границе и его адсорбции на ней в количестве, необходимом для предотвращения быстрой коалесценции. В эксперименте, результаты которого легли в основу схемы на рис. 12, был использован маслорастворимый эмульгатор. Все последующее обсуждение основано на том, что адсорбция ПАВ на возникающей межфазной границе масло-вода происходит не мгновенно. «Пальцы» воды разрушаются, и сразу после этого реализуется ситуация, показанная на рис. 12, б. Адсорбция ПАВ не достигает равновесия: она больше в местах, где уже раньше существовала межфазная граница и ниже в пространстве между каплями, поскольку именно в этих местах образуется новая межфазная поверхность. Молекулы эмульгатора не имеют достаточного времени, чтобы достичь этих мест.
Рис. 12. Динамическая интерпретация правила Банкрофта: точки изображают молекулы эмульгатора
В результате создаются динамические градиенты межфазного натяжения, приводящие к перетеканию масла в зазоры между каплями за счет вязкостных сил – это пример проявления эффекта Марангони. Далее капли на какое-то время быстро расходятся, но этого времени достаточно для их стабилизации. Если бы происходил разрыв «пальцев» масла, то молекулы эмульгатора находились бы внутри капель и покрытие поверхности было бы одинаковым с самого начала. При этом не создавались бы условия для проявления эффекта Марангони, необходимого для разделения капель в течение критического начального периода эмульгирования.
Правило Банкрофта и геометрия молекулы поверхностно-активного вещества:
Существует еще один подход для объяснения правила Банкрофта: предполагается, что тип образующейся эмульсии определяется геометрией молекул ПАВ. Поверхностно-активные вещества с большим значением КПУ требуют больше пространства со стороны масла, и поэтому они преимущественно образуют эмульсии «вода в масле». У поверхностно-активных веществ с крупными полярными группами требования противоположные, поэтому они образуют эмульсии «масло в воде». Подобные идеи высказывались и ранее при попытках объяснить, почему некоторые ПАВ образуют эмульсии с неполярной дисперсионной средой, тогда как другие — с водной. Однако при сравнении размеров капель в эмульсиях и молекул ПАВ становится понятно, что в масштабе молекул ПАВ межфазная граница масло-вода почти плоская, так что разница между двумя способами ориентации молекул ПАВ должна быть небольшой. Недавно подход на основе геометрии молекул получил дальнейшее развитие с другой точки зрения. Показано, что спонтанная кривизна межфазной границы контролирует скорости коалесценции эмульсий через величины соответствующих энергетических барьеров процесса коалесценции. При разрыве эмульсионной пленки образуются два сильно искривленных монослоя.
Со временем радиус кривизны значительно увеличивается, но в момент разрыва пленки возникают небольшие радиусы кривизны. В этот переходный момент ПАВ с высоким значением КПУ, например поверхностно-активные вещества с двумя гидрофобными радикалами, благоприятствуют образованию структур типа «вода в масле», и наоборот. Затраты энергии на искривление монослоя могут быть большими для таких сильно искривленных поверхностей.Ярким примером использования концепции кривизны для объяснения типа образующейся эмульсии являются системы масло-вода-ПАВ вблизи ТИФ, когда в качестве поверхностно-активного вещества используется оксиэтилированное НПАВ. Такие смеси образуют три фазы: микроэмульсию в равновесии с избытками масла и воды. Если после удалении микроэмульсионной фазы, содержащей почти все поверхностно-активное вещество, две остающиеся фазы перемешивать, может образоваться эмульсия. Тип образующейся эмульсии целиком зависит от того, проводится ли эмульгирование при температуре выше или ниже ТИФ данной системы. При температуре ниже ТИФ спонтанная кривизна микроэмульсии выпукла по отношению к воде, т. е. КПУ НПАВ немного меньше 1. В этих условиях образуется эмульсия «масло в воде». При температуре выше ТИФ кривизна выпукла по отношению к маслу и КПУ НПАВ немного больше 1, соответственно, образуется эмульсия типа «вода в масле». В этом случае, по-видимому, относительная растворимость НПАВ в масле и воде не играет никакой роли. Молекулярная растворимость нормальных алифатических этоксилированных спиртов, например С12Е5, в углеводородах на несколько порядков выше, чем в воде.
Рис. 13. Разрыв тонкой пленки масла в системе масло - вода - ПАВ приводит к образованию сильно искривленного монослоя. Геометрия молекул ПАВ с двумя углеводородными цепями не способствует стабилизации разорвавшейся пленки масла. Сравните с разрывом пенных пленок
При использовании очень небольших концентраций или малоэффективного поверхностно-активного вещества тип образующейся эмульсии контролируется скорее процессом смешения, а не выбором ПАВ. В таких системах правило Банкрофта может не выполняться. Например, добавление масла к раствору НПАВ в воде может приводить к образованию эмульсии «масло в воде» также и при температуре выше температуры инверсии фаз, если концентрация ПАВ очень низка. Эмульсии, образование которых лимитируется гидродинамикой, обычно малоустойчивы и не представляют интереса для практических целей.
ККМ (критическая концентрация мицеллообразования):
Определение ККМ может осуществляться при изучении практически любого свойства растворов в зависимости от изменения их концентрации. Наиболее часто в исследовательской практике используются зависимости мутности растворов, поверхностного натяжения, электрической проводимости, коэффициента преломления света и вязкости от общей концентрации растворов. Примеры получающихся зависимостей приведены на рис. 14.Критическую концентрацию мицеллообразования определяют по той точке, которая соответствует излому на кривых зависимостей свойств растворов от концентрации. Считается, что при концентрациях, меньших ККМ в растворах ПАВ, присутствуют лишь молекулы и зависимость любого свойства определяется именно концентрацией молекул. При образовании мицелл в растворах свойство будет претерпевать резкое изменение в связи со скачкообразным увеличением размера растворенных частиц. Так, например, молекулярные растворы ионогенных ПАВ проявляют электрические свойства, характерные для сильных электролитов, а мицеллярные – характерные для слабых электролитов. Это проявляется в том, что эквивалентная электрическая проводимость в растворах ионогенных ПАВ при концентрациях ниже ККМ в зависимости от корня квадратного из концентрации растворов оказывается линейной, что характерно для сильных электролитов, а после ККМ – зависимость ее оказывается типичной для слабых электролитов. Аналогичное изменение наблюдается и на зависимостях практически любого свойства растворов ПАВ от их концентрации. Водные растворы многих поверхностно-активных веществ обладают особыми свойствами, отличающими их как от истинных растворов низкомолекулярных веществ, так и от коллоидных систем. Одной из отличительных особенностей растворов ПАВ является возможность существования их как в виде молекулярно-истинных растворов, так и в виде мицеллярных - коллоидных.
Информация о работе Коллоидные поверхностно – активные вещества