Коллоидные поверхностно – активные вещества

Автор работы: Пользователь скрыл имя, 28 Декабря 2014 в 13:21, курсовая работа

Краткое описание

Поверхностно-активные вещества (ПАВ) — химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения. Основной количественной характеристикой ПАВ является поверхностная активность — способность вещества снижать поверхностное натяжение на границе раздела фаз — это производная поверхностного натяжения по концентрации ПАВ при стремлении С к нулю. Однако, ПАВ имеет предел растворимости (так называемую критическую концентрацию мицеллообразования или ККМ), с достижением которого при добавлении ПАВ в раствор концентрация на границе раздела фаз остается постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразования или агрегация).

Содержание

1.Введение……………………………………………………………………..3
2.ПАВ и ПИВ………………………………………………………………….5
3.Мицелла и её составляющие……………………………………………….18
3.Оптические свойства коллоидных растворов……………………………..42
4.Уавнение Рэлея……………………………………………………………...43
5.Ультромикроскопия………………………………………………………...46
6.Турбиждиметрия и нефелометрия…………………………………………49
7.Светорассеяние в растворах ВМС…………………………………………56
8.Основные уравнения и законы……………………………………………..58
9.Расчётное задание…………………………………………………………..63
10.Заключение………………………………………………………………...67
11.Список литературы………………………………………………………..71

Вложенные файлы: 1 файл

пояснит к курс проект.docx

— 1.24 Мб (Скачать файл)

В 1946 г. Геллер установил зависимость показателя степени для белых золей от размера частиц, экспериментально определяемого независимым методом. Калибровочная кривая Геллера, которая может быть использована для графического определения радиуса частиц, приведена на рис. 26.

Рис.26. Зависимость показателя степени при длине волны света в уравнении от размера (радиуса) частиц в белых золях.

Для радиуса частиц от 50 до 100 нм калибровочная зависимость имеет линейный вид и может быть описана уравнением:

a = 3,1 - 2,16×10-2(r -50).

Это уравнение справедливо  для а = 3,1¸2,0. Для других значений показателя степени а расчет надо проводить с использованием функции Z. Для подавляющего большинства латексов синтетических полимеров радиус частиц более 25 нм, поэтому уравнение Рэлея не может быть использовано. Размер частиц таких латексов можно определить с помощью метода Геллера по результатам определения показателя степени при длине волны в уравнении, с последующим использованием таблицы калибровочной кривой или уравнения.

Уравнение Ламберта-Бера:

Зако́н Бугера — Ламберта — Бера — физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде. Изменение интенсивности света, проходящего через любую среду, описывается законом Ламберта—Бера:

I=-I0 exp(-ξ·l)                         (1)

                   (2)

где I—интенсивность прошедшего света;

I0—интенсивность входящего в среду свет;

l — толщина поглощающего слоя;

ε -индивидуальная константа, зависящая от природы: вещества, длины световой волны и не зависящая от концентрации раствора;

с — концентрация вещества.

Обычно ε > 0, т. е, происходит ослабление проходящего света, но имеются особые среды, у которых ε< 0 т. е. происходит усиление света - это лазерные среды.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Расчетная часть.

 

Задача 1.

        Поток света с длиной волны λ = 528нм, проходя через эмульсию CCl4 в воде толщиной слоя ℓ= 5 см, ослабляется в результате светорассеяния в два раза. Рассчитайте радиус частиц дисперсной фазы, если её объемное содержание сv = 0,8%, показатель преломления для  CCl4 и воды соответственно равны 1,460 и 1,333. Свет рассеивается в соответствии с уравнением Рэлея и ослабляется по закону Бугера-Ламберта-Бера.

 

Решение:

 Уравнение Рэлея для интенсивности света, рассеиваемого единицей объема дисперсной системы во всех направлениях, имеет следующий вид:

Ip= .

Интенсивность света при прохождении через белый золь уменьшается в соответствии с уравнением Бугера-Ламберта-Бера:

;

 

По условию задачи . Тогда

  ;

Подставляя полученное значение τ в уравнение Рэлея, находим радиус капель эмульсии:

Ответ: 22,3 нм.

        

 Задача 2.

При исследовании методом поточной ультрамикроскопии Дерягина-Власенко водяного аэрозоля в видимом объеме 3,00*10-5 см3 прошедшем через счетное поле микроскопа, обнаружено в среднем 60 частиц. Вычислите радиус частиц аэрозоля, зная его концентрацию 15,0 мг/м3, плотность воды 1,0 г/см3.

 

Решение:

 Масса частиц m (кг) в видимом объеме Vx равна:

.

Масса одной частицы m0 будет равна:

, где n-число частиц, видимых в микроскоп. Тогда средний радиус одной частицы аэрозоля: .

Ответ: 0,12145*10-6м. 

 

Задача 3.

Определите молярную массу и число агрегации мицелл хлорида додециламмония C12H25NH3Cl (молярная масса 221,8 г/моль) в водных растворах 0,01 молярного раствора NaCl  при 30 оС по следующим данным о мутности:

с, г/л            3,20    4,10    5,10    6,10    7,35    8,15    10,15    12,15

τ∙103, м-1     12,00  21,13  29,04  34,84  40,41  43,32   49,46    54,36       

Длина волны света λ=436 нм, показатель преломления света в растворителе 1,332; инкремент показателя преломления ∆n/∆c = 0,160 см3/г.

Решение:

 По экспериментальным  данным строим график зависимости  мутности от концентрации; по  абсциссе точки пересечения двух  прямых на графике находим смо = ККМ = 5,7 г/л и по ординате - соответствующее значение τмо.

Используя формулу , находим оптическую постоянную Н. Рассчитываем соответствующие значения Нcм /τм, данные сводим в таблицу  и строим график (не показан) зависимости Нcм /τм (моль/кг) от с (кг/м3).

 

 

 

 


τ∙103,                                     ◦

   м-1                                 ◦                      

                           ◦


                       °

                      °

                    °

5,74                    °


      °


        0                5,7          с, г/л     

 

ККМ = 5,7 г/л.

смо = 5,7 г/л; τмо = 5,74∙10-3  м-1.

По экспериментальным данным для точек с большим значением, чем ККМ, рассчитываем  концентрации ПАВ в составе мицелл (см) и соответствующие значения мутности (τм), используя расчетные формулы:

см=с-5,70;  τм= τ-5,74∙10-3.

 

с,

кг/м3

τ∙103

,м-1

См,

кг/м3

τм∙103,

м-1

Нcм/τм, моль/кг

6,20

8,81

0,50

3,07

0,107

7,09

13,09

1,39

7,35

0,124

7,93

16,66

2,23

10,92

0,134

9,55

21,75

3,85

16,01

0,158

10,92

25,09

5,22

19,35

0,177

11,97

26,89

6,27

21,15

0,195


 

Полученную прямую экстраполируем до пересечения с осью Нc/τ ; при  с = 0, отрезок на оси Нc/τ, равный 0,10 моль/кг  будет равен 1/М. Отсюда 1/М = 0,10 и  М = 10 кг/моль 10000 г/моль. Число агрегации мицелл n = 10000/263,88 = 37,9.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заключение:

Мировое производство ПАВ постоянно возрастает, причём доля неионных и катионных веществ в общем выпуске всё время увеличивается. В зависимости от назначения и химического состава ПАВ выпускают в виде твёрдых продуктов (кусков, хлопьев, гранул, порошков), жидкостей и полужидких веществ (паст, гелей). Особое внимание всё больше и больше уделяется производству ПАВ с линейным строением молекул, которые легко подвергаются биохимическому разложению в природных условиях и не загрязняют окружающую среду. ПАВ находят широкое применение в промышленности, сельском хозяйстве, медицине, быту. Важнейшие области потребления ПАВ: производство мыл и моющих средств для технических и санитарно-гигиенических нужд; текстильно-вспомогательных веществ, т. е. веществ, используемых для обработки тканей и подготовки сырья для них; лакокрасочной продукции. ПАВ используют во многих технологических процессах химических, нефтехимических, химико-фармацевтических, пищевой промышленности. Их применяют как присадки, улучшающие качество нефтепродуктов; как флотореагенты при флотационном обогащении полезных ископаемых, компоненты гидроизоляционных и антикоррозионных покрытий и т.д. ПАВ облегчают механическую обработку металлов и др. материалов, повышают эффективность процессов диспергирования жидкостей и твёрдых тел. Незаменимы ПАВ как стабилизаторы высококонцентрированных дисперсных систем (суспензий, паст, эмульсий, пен). Кроме того, они играют важную роль в биологических процессах и вырабатываются для "собственных нужд" живыми организмами. Так, поверхностной активностью обладают вещества, входящие в состав жидкостей кишечно-желудочного тракта и крови животных, соков и экстрактов растений.

Влияние ПАВ на здоровье человека и Планеты:    

Чем же так страшны ПАВ для экологии и человека? Дело в том, что ПАВ могут быстро разрушаться в окружающей среде или, наоборот, не разрушаться, а накапливаться в организмах в недопустимых концентрациях. Один из основных негативных эффектов ПАВ в окружающей среде — понижение поверхностного натяжения. Например, в океане изменение поверхностного натяжения приводит к снижению показателя удерживания диоксида углерода CO2 в массе воды. По некоторым данным ПАВ адсорбировавшись на поверхности воды в водоемах повышает поглощение волн радиолокационного сигнала. Другими словами, радары и спутники хуже улавливают сигнал от объектов находящихся под водой в водоемах с определенной концентрацией ПАВ. Только немногие ПАВ считаются безопасными (алкилполиглюкозиды), так как продуктами их деградации являются углеводы. Однако адсорбировавшись на поверхности частичек земли/песка степень/скорость деградации ПАВ снижается в разы. Так как почти все ПАВ, используемых в промышленности и домашнем хозяйстве, имеют положительную адсорбцию на частичках земли, песка, глины, при нормальных условиях они могут высвобождать (десорбировать) ионы тяжелых металлов, удерживаемые этими частичками, и тем самым повышать риск попадания этих веществ в организм человека. Большинство ПАВ обладают чрезвычайно широким диапазоном отрицательного влияния как на организм человека и водные экосистемы, так и на качество вод. Прежде всего они придают воде стойкие специфические запахи и привкусы, а некоторые из них могут стабилизировать неприятные запахи, обусловленные другими соединениями. Так, содержание в воде ПАВ в количестве 0,4-3,0 мг/дм3 придаёт ей горький привкус, а 0,2 -2,0 мг/дм3 - мыльно керосиновый запах. Одним из основных физико-химических свойств ПАВ является высокая пенообразующая способность, причём в сравнительно низких концентрациях (порядка 0,1-0,5 мг/дм3). Возникновение на поверхности воды слоя пены затрудняет тепломассообмен водоёма с атмосферой, снижает поступление кислорода из воздуха в воду (на 15-20 %), замедляя осаждение и разложение взвесей, процессы минерализации органических веществ, и тем самым ухудшает процессы самоочищения. Некоторые нерастворимые ПАВ при попадании на поверхность воды образуют нерастворимые пленки, распространяющиеся при достаточной площади растекания в монослои. Значительную часть антропогенной нагрузки, приходящейся на поверхностные водные объекты, составляют сточные воды, содержащие синтетические поверхностно-активные вещества (СПАВ), которые входят в состав всех хозяйственно-бытовых и большинства промышленных сточных вод. 95-98 % общего количества применяемых в нашей стране детергентов - синтетических моющих средств (CMC), вырабатываемых промышленностью, составляют анионные и неионогенные ПАВ и моющие средства на их основе, которые, как правило, характеризуются низкой биологической разлагаемостью и в силу своей химической природы оказывают существенное отрицательное воздействие на водные объекты. Попадая в водоёмы, ПАВ активно участвуют в процессах перераспределения и трансформации других загрязняющих веществ (таких как хлорофос, анилин, цинк, железо, бутилакрилат, канцерогенные вещества, пестициды, нефтепродукты, тяжёлые металлы и др.), активизируя их токсическое действие. С ПАВ связано 6-30 % меди, 3-12 % свинца и 4-50 % ртути в коллоидной и растворённой форме. Незначительной концентрации ПАВ (0,05-0,10 мг/дм3) в воде достаточно, чтобы активизировать токсичные вещества. При небольшом содержании ПАВ в воде часто наблюдается коагуляция (слипание) и седиментация примесей (оседание), обусловленная уменьшением или даже снятием электрокинетического потенциала частиц вследствие сорбции противоположно заряженных органических ионов ПАВ. Кроме того, ПАВ несколько тормозят распад канцерогенных веществ, угнетают процессы биохимического потребления кислорода, аммонификации и нитрификации. При гидролизе ПАВ и детергентов в водной среде образуется комплекс фосфатов, что приводит к евтрофированию водоёмов. CMC в среднем поставляют в природные воды от 20 до 40 % общего фосфора. ПАВ также могут способствовать и повышению эпидемиологической опасности воды, а также способствуют химическому загрязнению воды веществами высокой биологической активности. Большинство ПАВ и продукты их распада токсичны для различных групп гидробионтов: микроорганизмов (0,8-4,0 мг/дм3), водорослей (0,5-6,0 мг/дм3), беспозвоночных (0,01-0,9 мг/дм3) даже в малых концентрациях, особенно при хроническом воздействии. ПАВ способны накапливаться в организме и вызывать необратимые патологические изменения. Многими исследователями отмечается зависимость степени и характера влияния ПАВ на водные организмы от химической структуры веществ. Наиболее сильное отрицательное влияние оказывают алкиларилсульфонаты, т.е. вещества, имеющие в своей молекуле бензольное кольцо, и некоторые неионогенные вещества. Менее всего токсичны ПАВ на основе полимеров, несколько токсичнее алкилсульфаты и алкилсульфонаты. Соединения, имеющие прямую боковую цепь, более токсичны, чем вещества с сильно разветвлённой углеродной цепью. Токсичность ПАВ в водной среде в значительной степени уменьшается за счёт их способности к биодеградации. ПАВ, в той или иной степени, поглощаются всей флорой и фауной водных объектов. Среди основных причин загрязнения водоёмов этими веществами также часто отмечают способность ПАВ, выбрасываемых выпускающими их предприятиями в воздух в значительных количествах, проникать с атмосферными осадками в открытые водоёмы и просачиваться в подземные ближние слои грунтовых вод. В грунтовые воды ПАВ попадают также при очистке сточных вод на полях фильтрации и при этом, как правило, увлекают за собой и другие загрязнения. Из подземных вод ПАВ практически беспрепятственно проходят в поверхностные водоисточники и через очистные сооружения в питьевую воду. Кроме того, попадая в природные воды, ПАВ сорбируются содержащимися в них частицами минерального и органического происхождения, оседают на дно водоёмов и тем самым создают очаги вторичного загрязнения.Большая трудность очистки воды от ПАВ состоит в том, что различные ПАВ в водоёмах чаще всего встречаются в виде смеси отдельных гомологов и изомеров, каждый из которых проявляет индивидуальные свойства при взаимодействии с водой и донными отложениями, различен и механизм их биохимического разложения. Исследования свойств смесей ПАВ показали, что в концентрациях, близких к пороговым, эти вещества обладают эффектом суммирования их вредных воздействий.  Большинство из вновь синтезированных ПАВ, поступающих в водоёмы и водотоки со сточными водами, способны накапливаться в них на протяжении длительного времени, особенно если состоят из смеси изомеров с различной скоростью расщепления. Исходя из этого, нормирование присутствия в водоёмах смеси ПАВ должно производиться по правилам, рекомендованным для смесей химических веществ. Предельно допустимая концентрация (ПДК) ПАВ в воде водоёмов составляет 0,5 мг/дм3, неионогенных - 0,1 мг/дм3. Лимитирующим показателем вредности СПАВ является их пенообразующая способность, которую также необходимо учитывать при повторном использовании очищенных сточных вод в техническом водоснабжении промышленных предприятий. Одна из отличительных особенностей воздействия ПАВ на окружающую среду состоит в том, что они способны усиливать воздействия других загрязняющих веществ. Данный отрицательный эффект получается за счет улучшения инфильтрации (проникновения) загрязняющих веществ из почвы в водоемы, в которых содержаться избыточные концентрации поверхностно-активных веществ. Также ПАВ способны смывать с поверхности закрепившиеся загрязнители и разрушать баланс загрязняющих веществ в окружающей среде, тормозя процесс их естественной переработки. Поэтому необходимость очистки сточных вод от ПАВ очевидна. Химическими предприятиями ежегодно выбрасывается в водоемы более 100 тыс. т ПАВ. В поверхности воды, содержащей ПАВ, образуется устойчивая пена, которая препятствует поступлению кислорода из воздуха в загрязненные бассейны и, тем самым, ухудшает процессы самоочищения и наносит большой вред как растительному, так и животному миру. Кроме того, некоторые из них придают воде неприятный запах и привкус.

 

 

 

 

 

Список литературы:

1)Абрамзон А. А., Гаевой  Г. М. (ред.) Поверхностно-активные вещества. — Л.: Химия, 1999.

2) С.А. Калужина. Физическая и коллоидная химия: лабораторный практикум. Воронеж: ЛОП ВГУ, 2001 г.

3) Остроумов С. А. Биологические эффекты при воздействии поверхностно-активных веществ на организмы. — М.: МАКС-Пресс, 2001.

4) Справочник, под ред. А. А. Абрамзона и Г. M. Паевого, Л., 1979; Мицеллообразование, солюбилизация и микроэмульсии, пер. с англ., M., 1980;

5) Ставская С. С., Удод В. М., Таранова Л. А., Кривец И. А. Микробиологическая очистка воды от поверхностно-активных веществ. — Киев: Наук . думка, 2002.

6) Коллоидные поверхностно-активные вещества, пер. с англ. под ред. А. Б. Таубмана, 3. H. Маркиной, M., 2000;

7) Шварц А., Перри Дж., Берч Д ж., Поверхностно активные вещества и моющие средства, пер. (перевод) с англ.(английский), М., 2006;

8)Электронные издания:

8.1) http://www.humuk.ru/

8.2) http://www.physchem.chimfak.rsu.ru/

 

 

 


Информация о работе Коллоидные поверхностно – активные вещества