Разработка методики определения флавоноидов в лекарственном растительном сырье

Автор работы: Пользователь скрыл имя, 26 Апреля 2013 в 12:12, дипломная работа

Краткое описание

Целью дипломной работы является разработка методики качественного и количественного анализа природных флавоноидов (рутина и кверцетина) с использованием спектрофотометрического и хроматомасспектрометрического методов.
Достижение поставленной цели предполагает решение следующих задач:
выявить необходимость качественного и количественного анализа биофлавоноидов;
выявить особенности (строение, физические и химические свойства) природных флавоноидов как объектов исследования;
проанализировать содержание рутина и кверцетина в лекарственном растительном сырье;
изучить современные методы выделения и идентификации флавоноидов;
изучить теоретические вопросы анализа методами спектрофотометрии и хроматомасспектрометрии;

Содержание

Введение 8
1 Общая часть 10
1.1 Краткая характеристика флавоноидов 10
1.2 Подготовка растительного сырья, идентификация, выделение и разделение флавоноидов 14
1.2.1 Сушка растительного сырья 14
1.2.2 Первичное исследование растительного сырья 15
1.2.3 Экстрагирование флавоноидов из растительного сырья 17
1.2.4 Хроматографические методы идентификации флавоноидов 18
1.2.4.1 Тонкослойная хроматография 18
1.2.4.2 Высокоэффективная жидкостная хроматография 20
1.3 Количественное и качественное определение флавоноидов 22
1.3.1 Химические методы исследования флавоноидов 22
1.3.1.1 Методы качественной идентификации флавоноидов 22
1.3.1.2 Объемные методы количественного определения флавоноидов 26
1.3.2 Электрохимические методы исследования флавоноидов 26
1.3.2.1 Потенциометрический метод количественного определения флавоноидов 26
1.3.2.2 Полярографические методы количественного определения флавоноидов 27
1.3.2.3 Метод капиллярного электрофореза 27
1.3.3 Физико-химические методы исследования флавоноидов 31
1.3.3.1 Оптические методы определения флавоноидов 31
1.3.3.2 Абсорбционная спектроскопия 34
1.3.4 Комбинированные методы исследования флавоноидов 45
1.3.4.1 Хроматомасспектрометрическое определение флавоноидов 45
2 Специальная часть 50
2.1 Выбор объекта исследования 50
2.1.1 Характеристика исследуемого сырья 50
2.1.1.1 Цветки календулы 50
2.1.1.2 Трава пустырника 51
2.1.1.3 Плоды боярышника 51
2.2 Методики экспериментов и анализов 52
2.2.1 Методы отбора проб 52
2.2.2 Метод определения влажности лекарственного растительного сырья 53
2.2.3 Методика количественного определения суммы флавоноидов в растительном сырье спектрофотометрическим методом 54
2.2.4 Количественное определение рутина и кверцетина в лекарственном растительном сырье методом хроматомасспектрометрии 57
2.2.5 Использованные реагенты 60
2.3 Результаты и обсуждение 61
2.3.1 Определение влажности 61
2.3.2 Количественное определение суммы флавоноидов в растительном сырье спектрофотометрическим методом при оптимальных условиях экстрагирования 62
2.3.3 Количественное определение флавоноидов в лекарственном растительном сырье методом хроматомасспектрометрии 63
3 Экономическая часть 69
Введение 69
3.1 Определение затрат на проведение исследования 74
3.1.1 Материальные затраты 74
3.1.2 Затраты на израсходованную электроэнергию 75
3.1.3 Заработная плата исполнителей исследования 76
3.1.4 Амортизационные отчисления 76
3.1.5 Расчет отчислений в социальные фонды 77
3.1.6 Определение накладных расходов 78
3.1.7 Смета затрат 78
Заключение 79
4 Безопасность и экологичность 80
4.1 Идентификация опасных и вредных факторов при работе в химической лаборатории 80
4.1.1 Основные понятия и гигиенические требования к производственному освещению 81
4.1.2 Влияние вибрации на условия труда в химической лаборатории 82
4.1.3 Влияние шума на организм человека 82
4.1.4 Вредные вещества в воздухе рабочей зоны и их воздействие на организм человека 83
4.2 Техника безопасности при работе в химической лаборатории 85
4.2.1 Общие требования безопасности при работе в лаборатории 85
4.2.2 Требования охраны труда перед началом работы 86
4.2.3 Требования охраны труда во время работы 86
4.2.4 Требования охраны труда по окончании работы 88
4.3 Общие положения по технике безопасности при использовании электроустановок в лаборатории 89
4.4 Эксплуатация электроприборов 89
4.5 Требования охраны труда в аварийных ситуациях 90
4.5.1 Общие требования безопасности в аварийных ситуациях 90
4.5.2 Требования безопасности в аварийных ситуациях при использовании электроустановок в лаборатории 91
4.5.3 Первая помощь пострадавшим от электрического тока 91
4.5.4 Требования безопасности в аварийных ситуациях при возникновении пожара в лаборатории 92
4.5.5 Действия по оказанию первой помощи пострадавшим 93
4.6 Экологичность эксперимента 94
4.7 Расчет осветительной установки для учебно-аналитической лаборатории 95
Заключение 100
Список использованных источников 101

Вложенные файлы: 1 файл

Весь Диплом.docx

— 1.69 Мб (Скачать файл)

В организме человека кверцетин, как и рутин, не вырабатывается. К основным источникам кверцетина природного происхождения относятся: брусника, черная смородина, малина, ежевика,  клюква, черника, рябина, облепиха [2,3].

1.2 Подготовка  растительного сырья, идентификация,  выделение и разделение флавоноидов 

1.2.1 Сушка растительного  сырья

 

Лекарственное сырье сразу  после сбора необходимо как можно  быстрее сушить, так как в нем  содержится большое количество влаги. Так, листья, трава и цветы содержат до 80 – 85%, сочные плоды до 96%, а корни  и корневища до 46 – 65% влаги. При  такой влажности растительное сырье  под воздействием ферментов, имеющихся  в растениях, и температуры, возникающей  в результате самосогревания уплотненного сырья, быстро подвергается порче. Для  сушки растительное сырье сразу  же после сбора рассыпают тонким слоем так, чтобы на один квадратный метр приходилось не более 1 – 2 кг сырья. Чтобы оно сохло быстрее и  не согревалось, его чаще переворачивают. Рассыпать растения необходимо на какой-нибудь чистой подстилке. Лучше всего лекарственное  сырье сушить в хорошо проветриваемых помещениях [6].

Характер сушки зависит  от вида сырья и содержания в нем  действующих веществ. Сырье, имеющее  в своем составе гликозиды (горицвет, ландыш, полынь, наперстянка), необходимо сушить при температуре 50 – 60°С, при которой быстро прекращается деятельность ферментов, разрушающих гликозиды.

Все виды лекарственного сырья  лучше сушить под открытым навесом, где имеется хорошая вентиляция и на сырье не падают прямые солнечные  лучи, а также в закрытых помещениях с вентиляцией.

Самым «сберегающим» служит способ глубокого замораживания  и высушивания в вакууме. Полученный таким способом растительный материал далее пригоден к длительному  хранению. В тех случаях, когда  основная цель исследования состоит  в точной количественной оценке содержания флавоноидов, целесообразно применять  быстрое замораживание растительного  материала жидким азотом сразу после  его сбора.

В промышленных масштабах  процессу сушки сырья в производстве фитопрепаратов уделяется большое внимание. Технология этого процесса строго регламентирована [6,7].

1.2.2 Первичное  исследование растительного сырья

 

Работу с любым новым  растением целесообразно начинать на небольшой навеске сырья с  подбора оптимального экстрагента и предварительной оценки состава БАВ из извлечений капельным или экспресс-хроматографическим методом с использованием специфических реакций на основные группы природных соединений.

Для этого берут навески  измельченного растительного сырья, просеянного сквозь сито, заливают разнополярными экстрагентами в соотношении 1:10 (вода, 10 %, 30 %, 50 %, 70 %, 96 % спирт, ацетон и 50 % водный ацетон, этилацетат, хлороформ, бензол (пентан, гексан, гептан, толуол)) и оставляют настаиваться (с перемешиванием или без) в течение 1-3 дней при комнатной температуре.

Перечисленные экстрагенты являются оптимальными для определения "возможных" групп извлекаемых соединений растений (гликозиды, агликоны, сложные эфиры, соединения, содержащие группы ОН, С=О, СООН, NH(NH2) жирного и ароматического ряда, неполярные и высокомолекулярные вещества). Вместо этилового спирта или в дополнение к нему можно использовать метиловый или другие спирты, диоксан, этиленгликоль, формамид, кислоты, основания, что расширяет информацию о составе групп веществ в растении.

Извлечения, полученные при  комнатной температуре, оценивают  по качественному составу групп БАВ и количественному содержанию экстрактивных веществ. Для этого из каждого извлечения на фильтровальную бумагу наносят пятна извлечений (не менее 10 точек каждого извлечения на расстоянии 1-1.5 см друг от друга, d = 0.5 см). Отбирают аликвоту каждого извлечения, испаряют в предварительно взвешенной фарфоровой чашке, доводят до постоянного веса и определяют количество экстрактивных веществ, извлекаемых каждым растворителем без нагревания.

Затем все извлечения одновременно нагревают на кипящей водяной  бане в течение одного часа и повторяют  описанную выше процедуру нанесения  проб на бумагу и определения количества экстрактивных веществ после  нагревания, т. е. оценивают изменения  в интенсивности окраски пятен  и количестве экстрактивных веществ, получаемых во всех вариантах извлечений при нагревании.

После проведения обязательных реакций на основные группы БАВ (таблица 1.1) и оценки группового состава БАВ  в полученных извлечениях, изучают компонентный состав, используя метод восходящей одномерной бумажной хроматографии в присутствии веществ-стандартов на разные обнаруженные группы БАВ, сравнивая их в видимом и УФ-свете, по величинам Rf и цвету пятен от действия специфических проявителей [8].

Таблица 1.1 – Обязательные реакции на основные группы БАВ

№ п/п

Реактив

Основные группы БАВ

1

NH3 (в парах или растворе)

С=О содержащие соединения (флавоноиды, пигменты, антоцианы, антрахиноны, халконы, ауроны, ксантоны и др.)

2

NaOH (КОН)

Антрацены, халконы, ауроны

3

FeCl3 (1-5 % водные или спиртовые)

Фенольные соединения

4

А1С13, (1-5 % водные или спиртовые)

Флавоноиды и другие фенольные  соединения с рядовым расположением  ОН-групп или сочетание рядом  стоящих С=О и ОН-групп

5

Железоаммониевые

квасцы  (1 % водный раствор)

Дубильные вещества (гидролизуемого и конденсированного типов)

6

Ванилин в концентрированной соляной  или серной кислоте

Катехины, конденсированные дубильные  вещества, антоцианы

7

о-Толуидин

Альдозы (углеводы)

8

Нингидрин

Аминокислоты, аминосахара, алкалоиды с NH2

и NH-rpyппами

9

Реактив Драгендорфа (или фосфорно-вольфрамовая кислота)

Алкалоиды

10

"Лактонная" проба

Кумарины

11

Проба на "пенообразование" (делается в растворе)

Сапонины


 

В результате при небольшом расходе  сырья и экстрагентов решается несколько задач:

  • подбор оптимального экстрагента (по качественному составу извлекаемых групп БАВ и количеству экстрактивных веществ);
  • подбор режима экстракции (без температуры или с нагреванием) по результатам изменений в интенсивности окраски, по качественным реакциям на основные группы БАВ и степени их извлечения. Рекомендуется использовать не менее 10 реакций, поскольку в извлечениях могут присутствовать вещества, мешающие друг другу при их качественном определении в составе одного извлечения;
  • суммарная информация может служить основой для разработки технологической схемы выделения целевых веществ [8].

1.2.3 Экстрагирование  флавоноидов из растительного  сырья

 

Следующим этапом при изучении состава и  получения лекарственных  средств заключается в извлечении (экстрагировании) флавоноидов. К этому  этапу также предъявляются требования соблюдения сохранности нативного состава веществ.

Для флавоноидных гликозидов подходящими экстрагентами являются спиртосодержащие смеси: метанол – вода (70:30) и чаще этанол – вода с разным соотношением компонентов. Спиртосодержащие экстрагенты выполняют еще и важную роль ингибирования ферментных систем растений и тем самым способствуют сохранению нативности состава.

Для агликонов, как для менее полярных соединений, кроме того, применимы и такие экстрагенты, как этилацетат и диэтиловый эфир.

В целях количественного  анализа процедуру извлечения повторяют  дважды или трижды (до максимального  «истощения» экстрагируемого материала). Если растительный материал (листья, трава  и т. п.) обогащен хлорофиллом, то для  освобождения от него либо проводят преэкстракцию неполярным растворителем (хлороформом, диэтиловым эфиром), либо обрабатывают этими растворителями уже полученные экстракты, как правило, после практически полного удаления из них спирта.

Для флавоноидов, как и  для других веществ, не существует способа  выделения, универсального для всех растительных материалов. В каждом конкретном случае прибегают к наиболее подходящему методу или сочетанию  методов, с учётом в основном свойств  веществ и особенностей растительного  сырья. Наиболее часто используются избирательная экстракция, осаждение  с помощью солей тяжёлых металлов и хроматографические методы [9].

1.2.4 Хроматографические методы идентификации флавоноидов

 

Избирательная экстракция для  флавоноидов имеет важное значение в связи с широким использованием для их разделения и очистки различных вариантов хроматографического метода.

В настоящее время используют различные варианты хроматографического  метода. Наиболее важной в качественном анализе является распределительная  хроматография на бумаге. Тонкослойный вариант удобен для разделения ароматических оксикислот и метилированных флавоноидов, которые с трудом делят на бумаге.

Метод жидкостно-жидкостной хроматографии  и, особенно, ВЭЖХ позволяет  осуществлять качественный и количественный анализ всех видов флавоноидов.

Для разделения флавоноидов  между собой и отделения от сопутствующих веществ используется адсорбционно-хроматографический метод [10].

1.2.4.1 Тонкослойная  хроматография

 

Метод тонкослойной хроматографии (ТСХ) очень удобен для сравнительного анализа с использованием стандартных веществ.

Пятна флавоноидов на хроматограмме  зачастую могут быть обнаружены просто при облучении пластинки УФ-светом. Широко используются методы обработки хроматограмм такими проявляющими (детектирующими) реагентами, как спиртовый раствор АlCl3, пары иода и концентрированная серная кислота (для силикагелевых слоев), а также нагревание (только для силикагелевых пластинок).

Метод ТСХ позволяет широко варьировать сочетание сорбента и подвижной фазы, подбирая наиболее оптимальный вариант для конкретного объекта (таблица 1.2).

Специфическим для хроматографии  флавоноидов является полиамидный сорбент. Полиамидный сорбент (стационарная фаза), в зависимости от состава подвижной фазы, может проявлять двойственный характер, а именно выступать в роли полярной или неполярной фазы.

Соответственно разделение веществ может протекать либо как обычный распределительный (в  водно-спиртовых элюентных системах), либо как обращенно-фазный распределительный (в элюентной системе метанол – хлороформ) процессы.

 

 

 

Таблица 1.2 – Типичные условия  ТСХ анализа флавоноидов

Группа флавоноидов

Неподвижная фаза (сорбент)

Подвижная фаза (элюентная система растворителей)

Флавоноидные  гликозиды

Целлюлоза

 

 

Бутанол – уксусная кислота  – вода (3:1:1)

трет-Бутиловый спирт – уксусная кислота – вода

Силикагель

 

Уксусная кислота (5 – 40%-я)

Этилацетат – метилэтилкетон – метанол (5:3:1)

Полиамид

Метанол – вода (8:2)

Хлороформ – метанол (1: 1)

Полярные гликоны (флавоны, флавонолы)

Целлюлоза

 

трет-Бутиловый спирт – уксусная кислота – вода

Бутанол – уксусная кислота  – вода (3:1:1)

50%-я уксусная кислота

Силикагель

 

 

 

Бензол – уксусная кислота  – вода (125:72:5)

Толуол – ацетон –  хлороформ (8:7:5)

Хлороформ – ацетон –  муравьиная кислота (9:2:1)

Полиамид

Хлороформ – метанол –  уксусная кислота (9:1:0,1)

Метанол – уксусная кислота  – вода (18:1:1)

Неполярные агликоны (дигидрофлавоны, изофлавоны, полиметилированные флавоны)

Целлюлоза

Уксусная кислота (10 – 30%-я)

Хлороформ – метанол (15:1 или 3:1)

Силикагель

Хлороформ – метанол (3:2)

Полиамид

Метанол – вода (1:1)


 

Центром сорбции является амидная группировка полиамидной  макромолекулы, например капрона. Хроматографируемые вещества образуют обратимые водородные связи между протонодонорной гидроксильной группой флавоноидного соединения и карбонильной группой амидного фрагмента.

Агликоны сорбируются на полиамиде прочнее, чем их гликозиды. Сорбция агликонов находится в пропорциональной зависимости от числа гидроксильных групп в молекуле, а также от их местоположения в молекуле [11, 12].

1.2.4.2 Высокоэффективная  жидкостная хроматография

 

Метод высокоэффективной  жидкостной хроматографии (ВЭЖХ) является быстрым, хорошо воспроизводимым методом, который требует малого количества анализируемого вещества и используется для количественного, качественного анализа и препаративного выделения [13].

Для флавоноидов более  употребительны колонки с обращенно-фазными сорбентами (RP-8; RP-18) и детектирование с помощью УФ-видимого детектора с переменной длиной волны. В настоящее время широко используется фотодиодный детектор, позволяющий одновременно с выделением пика на хроматограмме получать УФ-видимый спектр вещества, соответствующего этому пику. Такой экспериментальный прием значительно облегчает задачу идентификации веществ.

Подвижные фазы (элюентные системы), как правило, бывают бинарными и содержат подкисленный полярный компонент (водные растворы уксусной, перхлорной, фосфорной или муравьиной кислот) и менее полярный органический растворитель (метанол или ацетонитрил). Подвижная фаза может поступать в колонку как в изократическом, так и в градиентном режиме, когда в ходе процесса хроматографирования происходит во времени изменение соотношения компонентов подвижной фазы [13,14].

Градиентный режим наиболее подходит для разделения сложных  смесей флавоноидов. Для колонок  с обращенно-фазными сорбентами типичные градиентные программы основаны на использовании подвижных фаз с преобладанием на старте доли полярного растворителя с дальнейшим постепенным возрастанием доли менее полярного растворителя.

Соотнесение пика на хроматограмме  с «принадлежащим» ему веществом  является наиболее трудной задачей. Удобным приемом является использование  параллельного хроматографирования хорошо известных, так называемых стандартных образцов и сравнение с ними хроматограммы исследуемого объекта. Стандартное вещество в идеале должно быть наиболее родственно флавоноидам и иметь подобные хроматографические свойства. В тех случаях, когда стандартное вещество хроматографируется в равных условиях, но параллельно, его называют внешним стандартом. Внутренний стандарт (добавляется в исследуемую пробу перед вводом в хроматограф) должен отвечать следующим условиям: в исследуемой смеси не должно содержаться аналогичное вещество и пик стандарта не должен перекрываться с каким-либо соединением в смеси. Такие ограничения отсутствуют в случае применения внешнего стандарта.

Информация о работе Разработка методики определения флавоноидов в лекарственном растительном сырье