25 Февраля 2012, курсовая работа
В последние годы в прикладной математике большое внимание уделяется новому классу задач оптимизации, заключающихся в нахождении в заданной области точек наибольшего или наименьшего значения некоторой функции, зависящей от большого числа переменных. Это так называемые задачи математического программирования, возникающие в самых разнообразных областях человеческой деятельности и прежде всего в экономических исследованиях, в практике планирования и организации производства. Изучение этого круга задач и методов их решения привело к созданию новой научной дисциплины, получившей позднее название линейного программирования. В конце 40-х годов американским математиком Дж. Данцигом был разработан эффективный метод решения данного класса задач – симплекс-метод. К задачам, решаемых этим методом в рамках математического программирования относятся такие типичные экономические задачи как «Определение наилучшего состава смеси»,
11 Июня 2013, курсовая работа
Эффективность образование в частности математического, во многом зависит не только от разработки альтернативных программ, учебников, создаваемых на их основе сборников задач и упражнений, но и от психологической готовности учащихся к усвоению их содержание.
По-моему наиболее сложным структурным образованием, имеющим большое значение для успешного овладения математической, является пространственное мышление, которое включает сложные и разноплановые психические процессы, восприятие, память, узнавание, представление, воображение.
09 Января 2012, реферат
Важнейшим видом учебной деятельности, в процессе которой усваивается система математических знаний, умений и навыков, является решение задач. Именно задачи являются тем средством, которое в значительной степени направляет и стимулирует учебно-познавательную активность учащихся.
04 Декабря 2012, реферат
Работа над задачей на уроке с помощью описанных карточек-заданий органично вписывается в ход урока, удобна в организации, повышает самостоятельность учащихся, позволяет формировать у них умения решать текстовые математические задачи на доступном уровне сложности, - это совершенствует обучение решению задач учащихся начальных классов.
04 Ноября 2013, задача
Завдання 1.
Виходячи із сукупності спостережень за доходом деякого підприємства (y) і розміром оборотних коштів (x)(Таблиця1), необхідно виконати наступні завдання:
1. Побудувати лінійне рівняння парної регресії від .
2. Розрахувати коефіцієнти детермінації, кореляції та середню похибку апроксимації.
3. Оцінити статистичну значимість параметрів регресії й кореляції за допомогою -критерію Фішера й -критерію Стьюдента.
4. Виконати прогноз доходу y при прогнозному значенні оборотних коштів x, що становить 107% від середнього рівня.
14 Октября 2013, курсовая работа
В данной курсовой работе описывается метод решения краевой задачи линейного дифференциального уравнения второго порядка с использованием конечно-разностных уравнений, а также метод прогонки, использующийся для решения «трехчленной системы» линейных алгебраических уравнений, полученной при применении конечно-разностных уравнений.
14 Октября 2014, реферат
Если при решении логарифмического уравнения можно найти корни уравнения, а потом сделать проверку, то при решении логарифмического неравенства этот номер не проходит: при переходе от логарифмов к выражениям, стоящим под знаком логарифма необходимо записывать ОДЗ неравенства.
01 Декабря 2015, творческая работа
Уравнения и неравенства широко используются в различных разделах математики, в решениях важных прикладных задач.
Несмотря на значительный положительный опыт в методике преподавания этих тем, как показывает анализ результатов тестов, контрольных работ, результаты ЕГЭ, учащиеся недостаточно полно владеют знаниями и умениями по решению логарифмических уравнений и неравенств.
17 Сентября 2013, курсовая работа
Целью данной курсовой работы является изучение булевой алгебры и применение минимальных форм булевых многочленов к решению задач.
Объект исследования: булевы многочлены и систематические методы их упрощения.
Предмет исследования: практическое внедрение минимальных булевых многочленов.
Гипотеза исследования: оптимизация или минимизация булевых многочленов важна для таких приложений, как упрощение переключательных систем. Для достижения цели исследования были определены следующие задачи: проанализировать учебную литературу по теме исследования, раскрыть основные методы решения минимальных форм булевых многочленов.
20 Июня 2013, контрольная работа
Составим расширенную матрицу
1 Итерация.
В качестве направляющего элемента выбираем элемент . Преобразуем первый столбец в единичный. Для этого к второй и третьей строкам прибавляем первую строку, соответственно умноженную на -2 и -4. Получим матрицу:
На этом первая итерация закончена.
2 Итерация.
Выбираем направляющий элемент . Так как , то делим вторую строку на -3. Затем умножаем вторую строку на 1 и 3 и складываем соответственно с первой и третьей строками. Получим матрицу:
27 Ноября 2012, реферат
Операционное исчисление в настоящее время стало одной из важнейших глав практического математического анализа. Операционный метод непосредственно используется при решении обыкновенных дифференциальных уравнений и систем таких уравнений; его можно использовать и при решении дифференциальных уравнений в частных производных.
Основателями символического (операционного) исчисления считают русских ученых М. Е. Ващенко – Захарченко и А. В. Летникова.
12 Декабря 2012, контрольная работа
Решение систем линейных алгебраических уравнений – одна из основных задач вычислительной линейной алгебры. Хотя задача решения системы линейных уравнений сравнительно редко представляет самостоятельный интерес для приложений, от умения эффективно решать такие системы часто зависит сама возможность математического моделирования самых разнообразных процессов с применением ЭВМ. Значительная часть численных методов решения различных (в особенности – нелинейных) задач включает в себя решение систем линейных уравнений как элементарный шаг соответствующего алгоритма.
21 Июня 2012, курсовая работа
Работа посвящена вычислительным проблемам, возникающим в задачах линейной алгебры. В основном рассматриваются методы решения системы алгебраических уравнений.
Задачей линейно алгебры относятся основным методам вычислительной математики. Это обусловлено тем, что линейные модели играют первостепенную роль, а их численная реализация требует решать задачи линейной алгебры.
К основным задачам линейной алгебры можно отнести задачи:
1.Решения систем линейных алгебраических уравнений.
2.Нахождение обратных матриц, а также приведение матриц к каноническому виду (диагональному или к форме Жордана).
3.Нахождение собственных значений и собственных функций матриц.
Мы рассмотрим первую наиболее часто встречающуюся задачу нахождения решений систему линейных алгебраических уравнений с невырожденной квадратной матрицей.
26 Марта 2015, курсовая работа
Программа решает систему методом прогноза и коррекции (исправленный метод Эйлера). Точность решения ε=0.0001. Способ выбора шага – переменный шаг, выбираемый по верхней оценке остаточного члена. Характер системы – линейная автономная.
22 Апреля 2014, контрольная работа
Хотя достаточно много времени уделяется решению тригонометрических уравнений, но большое количество тригонометрических формул , которые нужно применить к разнообразным тригонометрическим уравнениям ,часто ставит ученика в тупик. И данная зачетная работа посвящена систематизации учебного материала по теме «Решение тригонометрических уравнений»»
03 Июня 2012, контрольная работа
1. Решить уравнение
2. Используя замену переменной решить уравнение
16 Ноября 2011, творческая работа
Понятие модуля (абсолютной величины) является одной из важнейших характеристик числа как в области действительных, так и в области комплексных чисел.
07 Мая 2012, контрольная работа
МКЭ для двумерной краевой задачи для эллиптического уравнения в декартовой системе координат. Базисные функции линейные на треугольниках. Краевые условия всех типов. Коэффициент разложить по линейным базисным функциям. Матрицу СЛАУ генерировать в разреженном строчном формате. Для решения СЛАУ использовать МСГ или ЛОС с неполной факторизацией.
21 Июня 2012, курсовая работа
Численное решение прикладных задач всегда интересовало математиков. Крупнейшие представители прошлого сочетали в своих исследованиях изучение явлений природы, получение их математического описания, как иногда говорят, математической модели явления, и его исследование. Анализ усложненных моделей потребовал создание специальных, как правило, численных или асимптотических методов решения задач. Названия некоторых из таких методов – методы Ньютона, Эйлера, Лобачевского, Гаусса, Чебышева, Эрмита, Крылова – свидетельствуют о том, что их разработкой занимались крупнейшие ученые своего времени.
Настоящее время характерно резким расширением приложений математики, во многим связанным с созданием и развитием средств вычислительной техники. В результате появления ЭВМ (электронно-вычислительных машин, или как часто говорят, компьютеров) с программным управлением менее чем за 50 лет скорость выполнения арифметических операций возросла от 0.1 операции в секунду при ручном расчете до 1012 операций на современных серийных ЭВМ, т.е. примерно в 1013 раз.
В настоящее время разработка методов и алгоритмов решения задачи Коши для обыкновенных дифференциальных уравнений продвинута настолько, что зачастую исследователь, имеющий дело с этой задачей, не занимается выбором метода ее решении, а просто обращается к стандартной программе.
В случае с уравнений с частными производными число принципиально различных постановок задач существенно больше. В курсе уравнений с частными производными обычно рассматривается незначительная часть таких постановок, главным образом связанных с постоянными коэффициентами. При этом существует очень малое количество задач, решаемых в явном виде. Многообразие постановок в теории уравнений с частными производными связано с многообразием окружающего нас мира.
Среди всех типов уравнений математической физики эллиптические уравнения с точки зрения вычислителей стоят особняком. С одной стороны, имеется хорошо развитая теория решения эллиптических уравнений и систем. Достаточно легко доказываются теоремы об устойчивости разностных схем для эллиптических уравнений. Цель работы: разработать сеточный метод, позволяющих решать задачу Дирихле методом разностных схем на примере уравнения Лапласа. В качестве среды разработки был выбран пакет matlab 6.5.
06 Сентября 2013, реферат
.Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, соотнося их с различными частями тела, главным образом пальцами рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность. Дальнейшее развитие математики началось примерно в 3000 до н.э. благодаря вавилонянам и египтянам.
16 Сентября 2013, реферат
Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, соотнося их с различными частями тела, главным образом пальцами рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность. Дальнейшее развитие математики началось примерно в 3000 до н.э. благодаря вавилонянам и египтянам.
28 Ноября 2013, реферат
В нашей стране новый период развития теории вероятностей открывается деятельностью С. Н. Бернштейна, значительно обобщившего классические предельные теоремы Чебышева, Ляпунова и Маркова и впервые в России широко поставившего работу по применениям теории вероятностей к естествознанию. В Москве А. Я. Хинчин и А. Н. Колмогоров начали с применения к вопросам теории вероятностей методов теории функций действительного переменного. Позднее (в 30-х гг.) они (и Е. Е. Слуцкий) заложили основы теории случайных процессов. В. И. Романовский (Ташкент) и Н. В. Смирнов (Москва) поставили на большую высоту работу по применениям теории вероятностей к математической статистике. Кроме обширной московской группы специалистов по теории вероятностей, в настоящее время в России разработкой проблем В. т. занимаются в Ст-Петербурге и в Киеве.
26 Сентября 2012, реферат
Счет предметов на самых ранних ступенях развития культуры привел к созданию простейших понятий арифметики натуральных чисел. Только на основе разработанной системы устного счисления возникают письменные системы счисления и постепенно вырабатываются приемы выполнения над натуральными числами четырех арифметических действий. Потребности измерения (количества зерна, длины дороги и т. п.) приводят к появлению названий и обозначений простейших дробных чисел и к разработке приемов выполнения арифметических действий над дробями.
12 Декабря 2013, реферат
Чаще всего компаниям нужны опытные главные бухгалтеры с высшим профильным образованием. Высокая потребность у организаций и в рядовом бухгалтерском составе. На сегодняшний день присутствует избыток специалистов, обладающих достаточно низкой квалификацией, небольшим опытом работы или же совсем без него. Но квалифицированные специалисты всегда были и будут в дефиците
27 Сентября 2012, доклад
Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность. Дальнейшее развитие математики началось примерно в 3000 до н.э. благодаря вавилонянам и египтянам.
05 Сентября 2014, реферат
Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, соотнося их с различными частями тела, главным образом пальцами рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность. Дальнейшее развитие математики началось примерно в 3000 до н.э. благодаря вавилонянам и египтянам.
13 Ноября 2013, реферат
Математика нужна всем вне зависимости от рода занятий и профессии. Известно, что еще в древние времена математике придавалось большое значение. Девиз первой академии – платоновской академии – «Не знающие математики сюда не входят» - ярко свидетельствует о том, насколько высоко ценили математику на заре науки, хотя в те времена основным предметом науки была философия.
Простейшие в современном понимании математические начала, включающие элементарный арифметический счет и простейшие геометрические измерения, служат отправной точкой естествознания.
01 Сентября 2014, реферат
Подготовка высококвалифицированных специалистов, конкурентоспособных на рынке труда, компетентных, ответственных, свободно владеющих своей профессией и ориентированных в смежных областях деятельности, способных к профессиональному росту и профессиональной мобильности в условиях информатизации общества и развития новых наукоемких технологий, является одной из основных задач образования.
Учитывая, что среднее профессиональное образование является одной из важнейших составляющих современного образовательного пространства РФ, в значительной мере влияющего на развитие инновационной экономики страны, решение указанной задачи применительно к подготовке специалистов в учреждениях среднего профессионального образования приобретает особую значимость.
08 Сентября 2013, реферат
Ромб-походить від латинського слова «Ромбус», що означає бубон. Ми звикли до того, що бубон має круглу форму, але раніше бубни мали форму квадрата або ромба, про що свідчать зображення «бубон» на гральних картах.
У слов'янській традиції ромб – один з найулюбленіших знаків. На жіночому одязі він зустрічається частіше, ніж на чоловічій; але і жінки, і чоловіки носили пояси, прикрашені ромбоподібним орнаментом. Ромб безумовний оберіг. Це знак землеробів, символ родящих зерно полів, символ щасливого потомства. Ромби зображали на кухонному начинні, вирізували на фасадах будинків. Вважалося, що сім'я, що охороняється ромбами, живе в достатку і завжди буде численна. Ромб з продовженими кінцями – знак
17 Января 2011, реферат
Ряды Фурье играют большую роль в математической физике, теории упругости, электротехнике и особенно их частный случай – тригонометрические ряды Фурье.